
Open the Box

Open APIs for the Smart Home

Fred Rivard, PhD, IS2T

André Bottaro, PhD, Orange Labs

with the contribution of

François Bodet, Bouygues Telecom,

Jean Le Tutour, Delta Dore

and Serge Subiron, IJenko

Eclipse IoT Day,

St Martin D’Hères, February, 19th, 2014

Summary

� A new world of applications new world of applications new world of applications new world of applications is about to emerge at home thanks to the growing

variety of available sensors and actuators

� To unleash service delivery, the whole telecom infrastructure is to be open to open to open to open to

third party applications third party applications third party applications third party applications through standard cloud and embedded APIs.

� Today technology status enables the openness to a set of trusted partners.

Remaining challenges are addressed Remaining challenges are addressed Remaining challenges are addressed Remaining challenges are addressed by Open the Box projectby Open the Box projectby Open the Box projectby Open the Box project.

• Cost and reliability Cost and reliability Cost and reliability Cost and reliability matter. Open the Box specified an OSGi platform with a low
hardware footprint and isolation between deployed applications.

• A demonstration demonstration demonstration demonstration shows application portability on IS2T Open the Box platform.

Smart Home
30 years after its official launch, a niche market likely to take off

� Seven application domains

– Security, energy, comfort, health, wellness, multimedia

content sharing, games

� Emergence of new products

Smart – Easy to install – Wireless

– Smart Objects: Withings, NetAtmo, Goji, Kolibree, Nest, …

– Smart Appliances: LG ThinkQ, Miele@Home, Samsung, ..

– Affordable self-install systems: Blyss, iControl, Ijenko,

MyFox,, …

Andre Bottaro, Fred Rivard, Eclipse IoT Day

A new world of applications will emerge on the long term from the variety of
sensors, actuators, devices that become available

A business ecosystem showing many initiatives

� The Smart Home Market is fragmented into niche markets

– Proprietary protocols, APIs and solutions

– Expensive solutions with a professional installation

– Numerous partnerships on vertical applications

⇒Many business initiatives arise

⇒The ecosystem needs federation

Energy
efficiency

Security &
energy
monitoring

energy
efficiency

Deutsche
Telekom,
E.ON, e-Q3,
Miele

Offer with
iJenko

Smart Home
by Orange

Energy@Ho
me with
Electrolux,
Enel, Indesit

energy
monitoring
with remote
on/off switch

Digital Life

Miruene

demand
response

Androïd@Home ?

HomeOS ?

Many service providers and solution integrators ini tiatives…

… and business actors that play both as service prov iders and product manufacturers

The future ecosystem of the Smart Home market

� Separated roles to let a wide set of business models emerge

– Internet Service Provider, Smart Home Operator and App Store Manager.

– Device provider and service provider. No silo.

– SDK provider and 3rd party software editor

Shared
infrastructure

Shared sensors

Shared screens

Business service

platform

Application

Store

Smart Home

Embedded Environment

Client /
Installer

App Store
Manager

Service
provider

Client

Smart
Home
Operator

Device
provider

3rd party
software
editor

SDK
provider

Internet
Service
Provider

Open the Box project use cases study

Smart Home

Operator Platform

Andre Bottaro, Fred Rivard, Eclipse IoT Day

Technical challenges

to open the architecture to 3rd party applications

Embedded service software platform

Robustness, adaptation to constrained devices

Resource management on a common embedded software platform

Security – management of the access rights to applications, to
hardware functions and to deployed sensors

Device Representation Layer – A simple SDK to represent devices

Dynamic application programming, data mediation infrastructure

Device and software management platform and applica tion shops

Openness of device management platforms and application shop tools
to 3rd parties

Sensor network and device management

Modular application deployment and administration

Simple remote access to heterogeneous device and sensor networks

Hardware box platform and sensor networks

Low power, home range, and low cost technology requirements

Technology interoperability

ConnectivityConnectivityConnectivityConnectivity

App StoreApp StoreApp StoreApp Store

Device Management Device Management Device Management Device Management

Open the Box embedded software platform

« Fifth Play » Smart Grid Ready Services

TV

VoD
cell. www tel. MicroEJ

Resource
management

...

Group of bundles
(a marketing service from a provider
of the ecosystem)

Embedded technical solution depicted

TV

VoD
cell. www tel.

Application domain eco-system
= one Kernel

EDC
(Embedded

Device
Configuration)

OSGi Framework for software components
(over Kernel&Features)

KF
(Kernel &
Features)

Libraries
(ECOM, File, Android,
TCP/IP, BlueTooth, ...)

Marketing Service N
= Feature N

Marketing Service 1
= Feature 1

Embedded platform technical requirements

● Low consumption & OS agnostic

» 1 mega of RAM, 1 Mega of « flash » (code + JPF) : no bloatware !

» Must run THE SAME on any RTOS (VxWorks, Linux/Android, Win, RTX, uCOS, FreeRTOS, ...)

● Resource management (OSGi RFC 200)

» CPU, Memory, Storage, Input/Output streams

● Reliable & Secure

» Kill of a Feature (group of bundles) MUST be feasible at ANY time

– Threads + objects + code killing

» No impact on other Features

– No stale reference, no zombie threads, etc.

» No « back door »

Technical Solution

● Principle : « group of bundles »

» One marketing service = one Feature = one tag for [Code, Threads,
Objects]

» 1 Kernel, N Features ==> ESR 020 « Kernel & Features »

● Kernel

» Autonomous, does not rely on any feature

» Controls the activity of the Features : life cycle, resources consumptions

» Native code is permitted

● Feature

» Relies only on the Kernel API

» Cannot access to others features directly (code, objects, threads) : must go
through kernel (proxy) object.

» Fully controlled by the virtualization engine: no native code

Ownership

● Type's owner

» Set when the type is loaded, cannot change during all type's life

» Array of type: same owner as the type. Array of base types are from the Kernel.

ej.kf.Kernel.getOwner(Object)

● Object's owner

» Set at object creation time to the execution context owner

● Execution context's owner

» The first execution context owner is the thread object's owner.

» Otherwise it is set to the caller's owner,

» Except when the caller is executing in Kernel mode (execution context's owner is Kernel) and the
receiver of the new context is an object owned by a feature (i.e. not the kernel), in that case the
new execution context owner is set to the receiver's owner.

» Kernel.getContextOwner() : fundamental API

» Kernel.enter() : enter in Kernel mode

» Kernel.exit() : if back to a Feature X, each local that points to an object owns by another Feature is
set to null

» Kernel APIs are only accessible from Kernel code, except FeatureEntryPoint interface (start, stop).

Features & Kernel definitions

● Feature [K] = 1 [K].kf file

» Entry point: implementation of the ej.kf.FeatureEntryPoint

» Version of the feature

» List of the embedded types (classes interfaces) : a.b.c, a.b.d.*

● Identification : X509 certificate [F].cert

» ej.kf.Module.getProvider returns the 6 first fields defined by RFC 2253:
CN (commonName), L(localityName), ST(stateOrProvinceName), O (organizationName), OU

(organizationalUnitName), C (countryName).

● Kernel

» One kernel.cert X509 certificate

» One kernel.kf file (properties)

» By default, types are owned by the Kernel

Loading a Feature = a group of bundles

● Kernel.load(InputStream)

» The content of the input stream is vm implementation dependent.
IncompatibleFeatureException is thrown on error.

» (1) read the bytes, link then

» (2) create a new thread owned by the loaded Feature

» (3) load returns

● Asynchronous initialization inside the new thread

» Feature's all <clinit> are executed

» Creation of the ej.kf.FeatureEntrypoint object

» FeatureEntryPoint.start()is called

Unloading a Feature

● Kernel.unload(Feature)

» Creation of a new thread owned by the Feature: execution of stop()

– There is a timeout to execute this method

» Once done, if there are still Feature's threads that are running, a
DeadFeatureException is thrown in such threads.

● On completion with true

» all threads owned by the Feature are stopped

» its code has been unlinked from Kernel

» memory has been reclaimed (objects and code)

● On completion with false

» all threads are stopped

» but the Kernel still « points » to some instances of some Feature classes.

» The kernel may release these reference, and recall unload.

OSGi over Kernel & Features

● Feature = Group of Bundles
» FeatureEntryPoint.start() → Bundle[].start()

» FeatureEntryPoint.stop() → Bundle[].stop()

● Kernel & Features insulation semantic
» BundleContext access is limited to Bundle owner

See [OSGi r4] section 4.4.16: […] it is intended to be used only by the bundle […]

» A Feature can only see Bundles, Services, Events,... owned by itself or the Kernel

● Framework Permissions
» AdminPermission

» BundlePermission

» ServicePermission

Security management

● Embedded Device Configuration (EDC)
» Permission framework based on java.lang.SecurityManager

● Runtime introspection
» Full insulation between Features, although communication is feasible using kernel

objects (i.e. the kernel controls the inter-feature communication)

» The identity of the owner is accessible

– Owner of the current stack frame (the Kernel or a Feature)

– Owner of the objects

– Owner of the code (bundles' classes & interfaces)

● Resources management Strategy
» Highly dependent from the application domain

» Highly dependent from the eco-system the “Kernel owner” wants
to create

Size & B.O.M cost

● Java platform size

» JPF (EDC + B-ON) : less than 50Kbytes

» KernelFeature extension: less than 10Kbytes

● Finishing a lightweight embedded linker

» Dynamic linker less than 20KBytes

Démo

1. Portabilité de l’environnement
d’exécution embarqué multi-opérateurs

21

� Integrate and create a standard execution environment

� to create a dynamic market of applications with Home players

� Publish a model and a set of APIs to the industry

Open the Box

Project ambition

Service providers

Application store managers

Platform operators

Software editors

Device providers

Execution Environment

Hardware

22

Thanks

