

BAHBAH TUTORIAL

Implement a Multi-Frontend Chat Application based on

Eclipse Scout

http://www.eclipse.org/scout/
24.10.2012

Authors: Matthias Zimmermann, Matthias Villiger, Judith Gull

http://www.eclipse.org/scout/

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 2 von 26

TABLE OF CONTENTS

1 PREREQUISITES .. 3

1.1.1 Starting the Bahbah Package ... 3

1.1.2 Compiling and Running the Initial Application .. 4

2 CREATING THE CHAT OUTLINE AND PAGES .. 6

2.1 CHAT OUTLINE .. 6

2.2 USER NODE PAGE .. 7

2.2.1 Adding a Node Page to the Outline ... 8

2.2.2 Setting the Tree Node Text .. 8

2.2.3 Configuring the Page ... 9

2.3 ADDING ONLINE USERS TO THE CHAT OUTLINE ... 9

2.3.1 Creating an Outline Service for Connected Buddies ... 9

2.3.2 Implementing a Service Operation .. 10

2.3.3 Creating and Configuring a NodePage for the Connected Users 11

2.3.4 Adding an Instance of the NodePage for Every Online User .. 11

2.3.5 Dynamically Adding and Removing Buddies upon Connect and Disconnect 12

3 CHAT FORM .. 14

3.1 CREATING A NEW FORM .. 14

3.1.1 Adding Fields to the Form ... 15

3.1.2 Opening the Chat Form ... 17

3.2 SENDING AND RECEIVING MESSAGES ... 18

3.2.1 Sending a Message .. 18

3.2.2 Appending a Message to the History field .. 19

3.2.3 Handling Received Messages .. 19

4 BUDDY ICON & ROW DECORATION.. 21

4.1 EXPLANATION OF PREPARED ELEMENTS .. 21

4.2 CHANGING THE BUDDY ICON .. 22

4.3 DISPLAYING BUDDY ICONS IN PAGES & FORMS ... 23

5 DEPLOYING THE APPLICATION TO TOMCAT ... 25

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 3 von 26

1 PREREQUISITES

In order to do this tutorial you need

- The Bahbah package delivered with this tutorial depending on your operating system:

o Bahbah_eclipse_win32.exe (for Windows)

o BahBah_eclipse_macosx.zip

o Bahbah_eclipse_linux_32.tar.gz (for Linux 32 bit)

o Bahbah_eclipse_linux_64.tar.gz (for Linux 64 bit)

- JDK (1.6 or later) for macosx and Linux. In the Windows package, a JDK is included in the

Bahbah package.

The Bahbah package contains

- Eclipse 3.8.1 (http://download.eclipse.org/eclipse/downloads/drops/R-3.8.1-201209141540/)

- Subversive SVN (http://www.eclipse.org/subversive/)

- Scout SDK 3.8.1 (Juno) (http://www.eclipse.org/scout)

- TARGET_SCOUT39: (some scout plugins that will be delivered with Scout 3.9.0 for mobile

support)

- TARGET_RAP: (Version 1.5, see http://www.eclipse.org/rap/)

- WORKSPACE_FINISHED: A workspace with the finished Bahbah application.

- WORKSPACE_START: The initial workspace for this tutorial

- apache-tomcat-6.0.35.zip (see http://tomcat.apache.org/)

1.1.1 Starting the Bahbah Package

Extract the package to a folder (e.g. C:\dev\bahbah_eclipse for windows) and start the eclipse executa-

ble. Select the workspace WORKSPACE_START and proceed with ok.

http://download.eclipse.org/eclipse/downloads/drops/R-3.8.1-201209141540/
http://www.eclipse.org/subversive/
http://www.eclipse.org/scout
http://www.eclipse.org/rap/
http://tomcat.apache.org/

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 4 von 26

Eclipse opens with the initial Bahbah workspace. The perspectives Scout and Java are available con-

taining the Scout project org.eclipse.scout.bahbah.

1.1.2 Compiling and Running the Initial Application

To compile Bahbah you need to set the target platform to ScoutRAP.target: Open the resource editor

CTRL+SHIFT+R and select the file ScoutRap.target. Click on Set as Target Platform!

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 5 von 26

This triggers an automatic recompilation of the workspace. After the compilation is finished there

should be no compilation errors.

Now you are ready to start Bahbah:

First start the server using the run configuration bahbah-server-dev.product:

You can see in the console that the server is running:

…
!ENTRY org.eclipse.scout.bahbah.server 1 0 2012-10-20 10:37:11.073
!MESSAGE
org.eclipse.scout.bahbah.server.ServerApplication.start(ServerApplication.java:56)
bahbah server initialized

Now you can start one or more clients. The available products are:

- bahbah-swing-client-dev.product (Rich Client SWING)

- bahbah-swt-client-dev.product (Rich Client SWT)

- bahbah-rap-dev.product (Web Client)

Access in a browser with the URL

o http://localhost:8082/web,

o http://localhost:8082/mobile (Mobile Version)

o http://localhost:8082/tablet (Tablet Version)

Login with

Username: admin

Password: admin

Once you logged in you can create and delete users in the administration view.

http://localhost:8082/web
http://localhost:8082/mobile
http://localhost:8082/tablet

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 6 von 26

2 CREATING THE CHAT OUTLINE AND PAGES

In this chapter we will extend the GUI of the Bahbah application with the help of the Scout SDK.

2.1 CHAT OUTLINE
The first goal is to create a new chat outline in the GUI for the chat conversations:

Add a new Outline to the desktop by right-clicking on the Node org.eclipse.scout.bahbah/client/Des-

ktop/Outlines and selecting New Outline…

Enter Chat as Name and finish the wizard.

Now you can open the new class ChatOutline generated by the Scout SDK, which represents the client

model for the chat outline by double-clicking the new ChatOutline in the Scout Explorer.

Scout SDK also added a new tool button in to the Desktop. Double-click on Desktop to open the

corresponding class.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 7 von 26

The order of the Buttons is given by the @Order Annotation. By default, new Buttons are added at the

end. To display the ChatOutlineViewButton as the first button just change its order annotation to

something smaller than the one of AdministrationOutlineViewButton (e.g. @Order(5.0)).

And because we want to have the just created Chat outline active when starting the application, we

also change the order in which the outlines are added to the Desktop: In the Desktop class find the

method getConfiguredOutlines and change the order in which the outlines are added so that the Cha-

tOutline comes first:

ArrayList<Class> outlines = new ArrayList<Class>();
outlines.add(ChatOutline.class);
outlines.add(AdministrationOutline.class);
return outlines.toArray(new Class[outlines.size()]);

At this point you might want to restart the clients (SWT, SWING and RAP Version) and see, if every-

thing looks as expected.

Note that all the changes you have done so far are in the client model in the plugin

org.eclipse.scout.bahbah.client. You do not have to write UI specific code.

2.2 USER NODE PAGE
The next step is to add some data to the chat outline. To get an overview of the currently connected

users we organize the chat outline tree in the following way: The top-level node represents the current-

ly logged-in user while all the other connected users are displayed as child nodes. Let’s start with the

top-level node.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 8 von 26

2.2.1 Adding a Node Page to the Outline

We can easily add this node by adding a new child page to the ChatOutline: Open the Scout Explorer

and right-click on the subfolder Child Pages of ChatOutline and choose New Page…. Choose Ab-

stractPageWithNodes as template for your page and proceed with Next. Type User in the Name field

and Finish the Wizard.

2.2.2 Setting the Tree Node Text

Remember that we want the text of the tree node to represent the logged-in user. To set this text we

have to edit the UserNodePage class:

Open the UserNodePage class by double-clicking the new node in the Scout Explorer. If the new page

is not visible already, select the Child Pages node below ChatOutline in the Scout Explorer and press

F5.

The text of the tree node is given by the title property of the page, which can be set by overriding the

method getConfiguredTitle. Currently the title property is set to the translated text “User”.

Update the getConfiguredTitle method to return the username stored in the client session.

 @Override
 protected String getConfiguredTitle() {
 return ClientSession.get().getUserId();
 }

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 9 von 26

2.2.3 Configuring the Page

We do not have any data to be displayed for this node. Therefore we set the table invisible for this

page: Click on the node UserNodePage in the Scout Explorer, open Advanced Properties in the Scout

Object Properties View and uncheck the property Table Visible.

Furthermore we would like to have this page expanded by default. Therefore we also tick the check-

box Expanded:

2.3 ADDING ONLINE USERS TO THE CHAT OUTLINE
In this section we add all the currently connected users to the chat outline.

2.3.1 Creating an Outline Service for Connected Buddies

First we prepare a service to retrieve all connected users, except the logged-in user, i.e. the buddies:

Expand the server node in the Scout Explorer and create a new outline service. Enter a class name and

click next.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 10 von 26

The following screen shows an overview of the service, its interface and registration. In the example

below the StandardOutlineService class contains the actual implementation of the service. The inter-

face IStandardOutlineService is located in the shared plugin and therefore visible in the client and

server plugin. Additionally, the service is registered in the OSGi service registry of the server and a

service proxy is created and registered on the client side. Press Finish to create the service.

2.3.2 Implementing a Service Operation

In order for the service to do something useful we need to add a service operation. Select New Service

Operation… in the Scout Explorer and enter the name and return type of the operation as shown in the

screenshot:

The Scout SDK simply adds a new public method to the service class and interface. Open the service

class to implement the method.

In the initial workspace there already exists a service operation to get all online users. (See UserPro-

cessService). We only need to call this operation and remove the logged-in username.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 11 von 26

The class org.eclipse.scout.service.SERVICES contains useful convenience methods to get services.

E.g. IUserProcessService svc = SERVICES.getService(IUserProcessService.class); finds the service

with the interface IUserProcessService in the registry.

 //get the service
 IUserProcessService svc = SERVICES.getService(IUserProcessService.class);
 //find all online users
 Set<String> allOnlineUsers = svc.getUsersOnline();

On the server, the logged in user is stored in the server session:

 String user = ServerSession.get().getUserId();

Putting it all together we end up with something like this:

 @Override
 public String[] getOnlineUsers() throws ProcessingException {
 Set<String> allUsers = SERVICES.getService(IUserProcessService.class).getUsersOnline();
 Set<String> users = new HashSet<String>(allUsers);
 // remove myself
 users.remove(ServerSession.get().getUserId());
 return users.toArray(new String[users.size()]);
 }

2.3.3 Creating and Configuring a NodePage for the Connected Users

Now we are ready to update the client. We create another NodePage for the buddies as a child page of

the UserNodePage: Open the Scout Explorer and right-click on the subfolder Child Pages of

UserNodePage and choose New Page…. Select AbstractPageWithNodes as template for your page and

proceed with Next. Type Buddy in the Name field and Finish the Wizard.

We add a property to the BuddyNodePage to later set the name. Right-click on Variables of the Bud-

dyNodePage and select New Property Bean… and create a property with name Name and Bean type

String.

Change the method getConfiguredTitle to return the name property.

 @Override
 protected String getConfiguredTitle() {
 return getName();
 }

Check Leaf in the Scout Object Properties View for the BuddyNodePage to indicate that the node nev-

er contains any children and uncheck Table Visible, because no table will be needed for this page.

2.3.4 Adding an Instance of the NodePage for Every Online User

In the last section we added a single BuddyNodePage as a child page of the UserNodePage. However,

instead of only one BuddyNodePage we would like to have one instance per buddy.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 12 von 26

The child pages are added to the UserNodePage in the method execCreateChildPages. Open the

UserNodePage class to edit this method.

To get the buddies we can call the service operation created in chapter 2.3.2. Remember that a service

proxy was registered on the client when we created the service. We can again use the SERVICES class

to get the registered service proxy and receive the data from the server by calling the service opera-

tion:

String[] buddies = SERVICES.getService(IStandardOutlineService.class).getOnlineUsers();

Now it’s your turn to implement execCreateChildPages(Collection<IPage> pageList), such that all buddies

are added to the pageList. Do not forget to set the name of the page.

Start multiple clients and verify that the connected users are now displayed in the chat outline.

2.3.5 Dynamically Adding and Removing Buddies upon Connect and Disconnect

So far the connected buddies are only evaluated once when the page is instantiated. In this section we

add the functionality to update the outline dynamically.

We implement this functionality using client notifications: Whenever a user connects or disconnects

the server sends a notification event to all clients (see NotificationProcessService). When the

client receives such a notification it refreshes the outline page.

The method updateBuddyPages below handles the refresh of the outline and adds or removes nodes, if

needed. Copy the following code snippet to the UserNodePage:

 public void updateBuddyPages() throws ProcessingException {
 HashSet<String> newBuddy = new HashSet<String>();
 ArrayList<String> updatedList = new ArrayList<String>();
 String[] buddies = SERVICES.getService(IStandardOutlineService.class).getOnlineUsers();

 for (String buddy : buddies) {
 newBuddy.add(buddy);
 }

 // keep track of known buddies and remove buddies that are no longer here
 for (IPage page : getChildPages()) {
 BuddyNodePage buddyPage = (BuddyNodePage) page;

 if (newBuddy.contains(buddyPage.getName())) {
 updatedList.add(buddyPage.getName());
 }
 else {
 getTree().removeChildNode(this, buddyPage);
 }
 }

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 13 von 26

 // add new buddies
 for (String buddy : newBuddy) {
 if (!updatedList.contains(buddy)) {
 BuddyNodePage buddyPage = new BuddyNodePage();
 buddyPage.setName(buddy);
 getTree().addChildNode(this, buddyPage);
 }
 }
 }

The client service BahBahNotificationConsumerService handles the client notification events.

Update the methods handleRefreshBuddies() and getUserNodePageFromDesktop() as shown

below.

 private void handleRefreshBuddies() {
 UserNodePage userPage = getUserNodePageFromDesktop();

 if (userPage != null) {
 try {
 logger.info("refreshing buddies on client");
 userPage.updateBuddyPages();
 }
 catch (Throwable t) {
 logger.error("handling of remote message failed.", t);
 }
 }
 }

 public UserNodePage getUserNodePageFromDesktop() {
 Desktop d = Desktop.get();
 if (d != null) {
 return d.getUserNodePage();
 }
 return null;
 }

Finally add getUserNodePage() and getChatOutline() to the Desktop class:

 public UserNodePage getUserNodePage() {
 IPage invisibleRootPage = getChatOutline().getRootPage();
 if (invisibleRootPage != null && invisibleRootPage.getChildNodeCount() > 0) {
 IPage p = invisibleRootPage.getChildPage(0);
 if (p instanceof UserNodePage) {
 return (UserNodePage) p;
 }
 }
 return null;
 }

 private IOutline getChatOutline() {
 for (IOutline o : getAvailableOutlines()) {
 if (o.getClass().equals(ChatOutline.class)) {
 return o;
 }
 }
 return null;
 }

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 14 von 26

3 CHAT FORM

The next goal is to create a form to enter the chat message and display the history of the conversation.

3.1 CREATING A NEW FORM
Select New Form… in the Scout Explorer and enter Chat as name. You can uncheck the check box

Create form Id, because the default form id property is not needed. Click Next to proceed.

Unlike most common forms the chat form is not used to enter data to be persisted on the backend or

display stored data. It is only used to display messages received by client notifications and send mes-

sages to other users. We therefore do not want to create the default process services and handlers. Un-

check everything except New Handler and finish the wizard.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 15 von 26

In this form we will need the buddy name and user name to send and display messages: Create the

bean properties userName and buddyName (both of type String) for the ChatForm using the menu

New Property Bean… in the Scout Explorer.

3.1.1 Adding Fields to the Form

Now let’s add a field to enter the message to the form:

Select New Form Field… on Main Box, choose the type StringField and click next. Enter the class

name MessageField (leave the Name empty) and Finish the Wizard.

No label is needed for the message field. Click on the new node MessageField in the Scout Explorer

View and uncheck the property Label Visible in the section Advanced Properties.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 16 von 26

We add another field for the history of the conversation: Select New FormField… on MainBox and

create a field with type TableField and class name HistoryField. Uncheck the property Label Visible

for the HistoryField as well.

To add columns to the history table expand the node HistoryField in the Scout Explorer and select

New column… Select Integer Column as template and Type as column name. To add additional col-

umns you can select Create one more column as the next step to the column wizard.

Add the following columns to the table:

Name Type Remarks

Type Integer

Sender String

Receiver String

Message String

Time Time To find this type, tick the box as shown below.

Check Show all Templates to add the time column.

We set the some more properties for the columns in the Scout Object Properties View:

- Type Column: Uncheck displayable, because we only use this columns to hold data and do

not actually display it

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 17 von 26

- Time Column: We want to sort the history in descending order, such that the last message ap-

pears on top: Uncheck Sort Ascending and set the Sort Index to 0 (both in the Advanced Prop-

erties section).

- Time Column: Set the Format to HH:mm:ss

- Message Column: Tick Text Wrap

- Table: Tick the property Multiline Text

Finally, we change the layout of the form fields. By default the fields are organized in a grid with

two columns. We change the Grid Column Count to 1 on the MainBox.

3.1.2 Opening the Chat Form

The chat form should be displayed on a click on the buddy node, i.e. when the BuddyNodePage is

activated.

Open the BuddyNodePage in the ScoutExplorer and add Exec Page Activated.

A form can be added to a page by calling setDetailForm.

FormHandlers are used to start a form in different ways, e.g. for creating new data vs. for editing exist-

ing data. The chat form has only one handler (NewHandler), which is started by calling startNew().

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 18 von 26

The following code snippet contains a basic implementation of execPageActivated.

public ChatForm getChatForm() throws ProcessingException {
 if (m_form == null) {
 m_form = new ChatForm();
 m_form.setAutoAddRemoveOnDesktop(false);
 m_form.setUserName(ClientSession.get().getUserId());
 m_form.setBuddyName(getName());
 m_form.startNew();
 }
 return m_form;
 }

 @Override
 protected void execPageActivated() throws ProcessingException {
 super.execPageActivated();

 // after buddy page activation the buddy's chat history is displayed on the right side
 ChatForm chatForm = getChatForm();
 setDetailForm(chatForm);
 }

3.2 SENDING AND RECEIVING MESSAGES
In this section we cover the actual sending and receiving of the chat messages.

3.2.1 Sending a Message

In order to send a message, a user types something in the message field and hits enter. To implement

this functionality, we add a key stroke action to the form:

Open the ChatForm in the Scout Explorer and right-click on Keystrokes below the MainBox. Select

New Key stroke… and enter SendMessageKeyStroke for the Class Name and enter for the Key Stroke.

Select the SendMessageKeyStroke in the Scout Explorer and add the operation Exec Action in the

Scout Objects Properties View and implement the execAction such that the current value of the mes-

sage field is sent.

 @Order(10.0)
 public class SendMessageKeyStroke extends AbstractKeyStroke {

 @Override
 protected String getConfiguredKeyStroke() {

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 19 von 26

 return "enter";
 }

 @Override
 protected void execAction() throws ProcessingException {

 // TODO send the current value of the message field to the server
 }
 }

Hints:

- Call sendMessage in INotificationProcessService to send the message

- getMessageField().getValue(); //gets the current value of the message field

3.2.2 Appending a Message to the History field

We create a new method to the history field to add a message to the table:

public class HistoryField extends AbstractTableField<HistoryField.Table> {

private final Integer MESSAGE_TYPE_LOCAL = 1;
private final Integer MESSAGE_TYPE_REMOTE = 2;

 public void addMessage(boolean local, String sender, String receiver, Date date, String message)
throws ProcessingException {
 getTable().addRowByArray(new Object[]{(local ? MESSAGE_TYPE_LOCAL : MESSAGE_TYPE_REMOTE), sender,
receiver, message, date});
 }

…

Now you can easily change the execAction Method in SendMessageKeyStroke such that the message

is added to the history field. Restart the client to verify that the message is added to the history field.

3.2.3 Handling Received Messages

The sending and receiving of messages can be implemented using client notifications. The server

sends a client notification containing the message to the receiving client. The client then displays the

message.

Note that in contrast to the refreshing of the RefreshBuddiesNotification a SingleUserFilter is applied,

such that only the receiving user needs to handle the message. (see NotificationProcessSer-

vice.sendMessage).

Add the following code snippet to the UserNodePage to find the chat form by buddy name:

 public ChatForm getChatForm(String buddy) throws ProcessingException {
 if (StringUtility.isNullOrEmpty(buddy)) {
 return null;
 }

 for (ITreeNode node : getChildNodes()) {
 BuddyNodePage buddyNode = (BuddyNodePage) node;
 if (buddyNode.getName().equals(buddy)) {
 return buddyNode.getChatForm();
 }
 }
 return null;

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 20 von 26

 }

Open BahBahNotificationConsumerService and implement handleMessage to display received mes-

sages in the correct chat form:

private void handleMessage(MessageNotification notification) {
 UserNodePage userPage = getUserNodePageFromDesktop();
 String buddy = notification.getSenderName();

 if (userPage != null) {
 try {
 ChatForm form = userPage.getChatForm(buddy);
 if (form != null) {
 form.getHistoryField().addMessage(false, buddy, form.getUserName(),
 new Date(), notification.getMessage());
 }
 }
 catch (Throwable t) {
 logger.error("handling of remote message failed.", t);
 }
 }
 }

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 21 von 26

4 BUDDY ICON & ROW DECORATION

This chapter describes how to extend the Chat outline so that each user can change its own buddy

icon. Furthermore we will improve the outline and chat history table to show these buddy icons. We

will add some colors as well to better distinguish the two persons involved in a conversation.

4.1 EXPLANATION OF PREPARED ELEMENTS
Each user must be able to change its buddy icon. Therefore we need a possibility to store icons per

user. The Derby database included in the workspace is already prepared for that.

Press Ctrl+Shift+T to open the Open Type dialog. In the

search field enter dbsetup and open the type by pressing Ok.

In the attribute list of the create-table-statement you can see

that there exists a BLOB (binary large object) type column

named icon. So the database is ready to store the buddy icon.

The workspace also contains a form capable of browsing lo-

cally to select an image file. You can find the form in the

Scout Explorer: client/Forms/IconChooserForm. When saved,

this form calls the IconProcessService which scales down the

image and stores it in the BLOB column in the database.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 22 von 26

4.2 CHANGING THE BUDDY ICON
So that we can make use of these prepared pieces we must add them to our chat application. In this

tutorial we create a new context menu on the top-level node of the chat bud-

dies tree on the left hand side of the application. To do so we navigate to the

client/Desktop/Outlines/ChatOutline/Child Pages/UserNodePage/Menus

node in the Scout Explorer and right-click on it. From the context we choose

the entry New Menu… Fill the dialog as shown in the screenshot:

Press finish to create the menu entry. Below the Menus node in the Scout Explorer the new menu is

shown. Select it and navigate to the Scout Object Properties view below. There remove the configura-

tion for Single Selection Action and Empty Space Action by clicking on the red minus icon right to the

properties. Below the Operations Section in the Scout Object Properties view press the green plus

icon next to Exec Prepare Action. When the operation is created, it is displayed as a hyperlink. By

clicking on it we will jump to the just created operation in the Java code. There replace the TODO

comment with the following code snippet:

setVisible(UserAgentUtility.isDesktopDevice() && ACCESS.check(new UpdateIconPermission()));

This hides the menu entry if the user has no permissions to update icons or if we are running on a mo-

bile or tablet client.

Now we have already added the change icon feature to our application. By activating the new context

menu in the buddies tree a user can now update its icon. But because Scout caches icons for perfor-

mance reasons, we will only see the new icon after we have restarted the client application.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 23 von 26

4.3 DISPLAYING BUDDY ICONS IN PAGES & FORMS
As every user can now update its icon we would also like to show these icons in the buddies tree and

the chat history table. To understand how this works, we will have a look at how icons are loaded in

Scout.

Icons always have a unique name. If an icon with a certain name should be shown, Scout calls an

IconProviderService. This service must then provide the necessary data for the requested icon name.

The initial workspace already contains an IconProviderService that can load icons from our Derby

database. The default Scout implementation of that service loads icons from plugin resource folders.

But because we would like to do both (load buddy icons from the database and load all other applica-

tion icons from the plugin resources) we need to distinguish icon names that belong to a buddy from

all other icons.

In this tutorial this is accomplished by a special prefix that is added to all buddy icons: If our IconPro-

viderService gets a request for an icon with that prefix, it will return the icon stored in the database.

Otherwise it will just delegate to the default implementation of Scout. This means that at everywhere

we would like to show buddy icons we must remember to add this prefix!

Now let’s start showing the icons: Open the client/All Pages/Buddy Node Page. In the Java editor add

the following code inside the class:

@Override
protected String getConfiguredIconId() {
 return BuddyIconProviderService.BUDDY_ICON_PREFIX + getName();
}

Now open client/All Pages/UserNodePage and add the following code:

@Override
protected String getConfiguredIconId() {
 return BuddyIconProviderService.BUDDY_ICON_PREFIX + ClientSession.get().getUserId();
}

Finally we navigate to client/Forms/ChatForm/MainBox/His-

toryField/Table. In the Advanced Operations section of the

Scout Object Properties view add the Exec Decorate Cell op-

eration and jump to the code by clicking on the hyperlink after

the creation. Inside the method add the following code:

// text color
row.setForegroundColor("000000");

// set icon id of the sender of the message (user icons have a specific prefix)
row.setIconId(BuddyIconProviderService.BUDDY_ICON_PREFIX + getSenderColumn().getValue(row));

// set font style and background color depending whether the message is from myself or not
boolean isMessageFromMe = MESSAGE_TYPE_LOCAL.equals(getTypeColumn().getValue(row));
if (!isMessageFromMe) {

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 24 von 26

 view.setFont(FontSpec.parse("BOLD"));
 row.setBackgroundColor("ddebf4");
}

Now we can start the application and change our icon. Afterwards a second client can be started

(choose a different user name). The new icon is then shown in the buddies tree on the left hand side

and inside the chat window.

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 25 von 26

5 DEPLOYING THE APPLICATION TO TOMCAT

In this chapter we will deploy the created application to an Apache Tomcat servlet container. For this

we will export it to two .war files:

1. The first containing the BahBah Server and a downloadable rich client.

2. The second containing the RAP UI used for browser, mobile & tablet access.

First navigate to the org.eclipse.scout.bahbah

project node in the Scout Explorer and select

Export Scout Project….

In the dialog specify a target directory. In this folder

the exported .war files will be saved. All other settings

can be kept at its default as shown in the example.

Press Next and verify that the War File for the

BahBah server is named bahbah.war. Press Next

again.

On this wizard page you can specify which rich client

should be available to download when navigating to

the BahBah web page. From the Client Product to

Include choose one of the products marked with (pro-

duction). You can choose the SWT or Swing client. Keep the default settings for Client Download

Location and press Next one last time.

In the last wizard page ensure that the WAR File is named bahbah_web.war and press Finish. The

selected products are now exported and packaged into two .war files that will be stored at the target

directory specified in the first step.

On the USB sticks provided you can also find a Tomcat 6 servlet container. Copy it to your hard drive

and start the server using <Tomcat Root>/bin/startup.bat or <Tomcat Root>/bin/startup.sh. Open a

BSI Business Systems Integration AG Bahbah Tutorial Version 1.0 Seite 26 von 26

web browser and navigate to the following page: http://localhost:8080/manager/html. Enter admin for

username and password.

On the manager web application scroll down to the Select WAR file to upload field and press the

Browse button. Navigate to target directory specified in the first step of the Scout Project Export wiz-

ard and select the bahbah.war file. Press Deploy. Repeat this step also for the bahbah_web.war file

exported at the same location.

Then navigate to the following URL: http://localhost:8080/bahbah/. The BahBah Server is now run-

ning! From the web page you can download the selected rich client to start chatting or you can now

also use the web version at http://localhost:8080/bahbah_web. This is also the URL to use for the mo-

bile and tablet access.

http://localhost:8080/manager/html
http://localhost:8080/bahbah/
http://localhost:8080/bahbah_web

	1 Prerequisites
	1.1.1 Starting the Bahbah Package
	1.1.2 Compiling and Running the Initial Application

	2 Creating the Chat Outline and Pages
	2.1 Chat Outline
	2.2 User Node Page
	2.2.1 Adding a Node Page to the Outline
	2.2.2 Setting the Tree Node Text
	2.2.3 Configuring the Page

	2.3 Adding Online Users to the Chat Outline
	2.3.1 Creating an Outline Service for Connected Buddies
	2.3.2 Implementing a Service Operation
	2.3.3 Creating and Configuring a NodePage for the Connected Users
	2.3.4 Adding an Instance of the NodePage for Every Online User
	2.3.5 Dynamically Adding and Removing Buddies upon Connect and Disconnect

	3 Chat Form
	3.1 Creating a new Form
	3.1.1 Adding Fields to the Form
	3.1.2 Opening the Chat Form

	3.2 Sending and Receiving Messages
	3.2.1 Sending a Message
	3.2.2 Appending a Message to the History field
	3.2.3 Handling Received Messages

	4 Buddy Icon & Row Decoration
	4.1 Explanation of Prepared Elements
	4.2 Changing the Buddy Icon
	4.3 Displaying Buddy Icons in Pages & Forms

	5 Deploying the Application to Tomcat

