
1

Codan: a C/C++ Static Analysis Framework for CDT

Alena Laskavaia
September, 2010

2

Agenda

Codan – stands for - “Code Analysis”

 An overview of the framework
 The user interface
 The development status
 How to create and integrate a simple internal checker
 How to integrate external tool such as lint
 What API provided to aid in writing a checker

3

Goal

To create a common components and API that are shared
between static analysis tools, such as:

 User Interface to control the Problems enablement and parameters
 Different launch modes (as you type, on demand, as a builder)
 A view to display additional problem information
 Generic Marker type for problems with extra fields
 API to log the problems
 Abstract classes for checkers
 Sample checkers
 JUnit testing framework

Besides the framework there is also a “Checkers Feature” which
has few implemented checkers and quick fixes

4

Codan Users

 Tool Vendors
 To create plugins containing end-user checkers and templates

 Software Architects, Process Enforcement people
 To create customized new checkers, based on templates (no

programming involved)
 To create problems profiles

 Developer, Tester, Code Inspector
 To check for errors as you type and have a quick way to fix them,

during development
 To find bugs, security violations, API violations, coding standard

violations during debugging, testing, code inspection or before
code commit

5

Architecture

Profile Editor
(Preferences)Launch Control Problem Details

(View)

Builder Registry Reporter

CheckerCheckerChecker

Markers

6

Plugins

Plugins in /cvsroot/tools/org.eclipse.cdt/codan

 org.eclipse.cdt.codan-feature – codan feature
 org.eclipse.cdt.codan.core – generic core components, registry, builder, abstract

checkers, all model interfaces
 org.eclipse.cdt.codan.core.cxx – C/C++ specific core components, abstract

checkers, etc
 org.eclipse.cdt.codan.checkers – actual C/C++ cherckers
 org.eclipse.cdt.codan.checkers.ui – UI support for specific checkers, such as

quick fix, parameter controls, detail view controls, etc
 org.eclipse.cdt.codan.ui – generic UI, preferences, launch, etc
 org.eclipse.cdt.codan.ui.cxx – specific C/C++ ui control, such CEditor listeners
 org.eclipse.cdt.codan.core.test – junit testing framework and tests for checkers
 org.eclipse.cdt.codan.examples – examples of checkers

7

Profile Editor (Problem Preferences)

 Either checker enabled or not
 Severity of the Problem
 Info – description, message
 Customization: edit message,

parameters, scope

8

Launch Control

Run on demand from context menu Run with Build

Run as you type

9

Problem Markers & Quick Fix

 Codan problem markers
 Categories for grouping
 Quick Fixes
 Special menu commands:

Customize...,Show in
Problem Details view

10

 Released in CDT 7.0 as optional feature
 Framework Features

 Pluggable checkers, base classes for generic checker and C/C++
AST checkers

 Customizable problems with severity, enablement, categories
 Parametrized checkers (limited ui support)
 Problem details view (extendable)

 Only handful of checker available for end-users


CDT 7.0

11

Development Status CDT 8.0

 Framework
 Generic framework for Quick Fix

 Base classes for simplified junits (code samples are read from comments)

 Better support for marker generation (tries to update markers instead of
delete/insert)

 Common scope filters for checkers (excluded/included files)
 Checker & Quick Fixes

 Added Problem Binding checker (which produces dozens of problems) and
Quick Fixes such as “Create Local Variable”, etc

 Added assignment to itself checker

12

How to create Internal Checker

 Define a problem
 Pick a model that can be used to find a problem, i.e. Index, AST,

Control Flow Graph, Data Flow Graph, Call Graph
 Extend abstract checker that supports a given model, and

implement a check (currently supported: No Model, Indexer,
C/C++ AST, Control Flow Graph)

 Create extension to define your checker and problem(s) it can
find, define a new category or assign to existing one

 Create a quick fix for the problem (optional)
 Create a documentation/description of a problem and integration

into extension
 Creation extension to problem view (optional)
 Create a junit test cases

13

Internal Checker – Example (Extension)

<extension
 point="org.eclipse.cdt.codan.core.checkers">
 </checker>
 <checker
 class="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectChecker"
 id="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectChecker"
 name="StatementHasNoEffectChecker">
 <problem
 category="org.eclipse.cdt.codan.core.categories.ProgrammingProblems"
 defaultSeverity="Warning"
 id="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem"
 name="Statement has no effect">
 messagePattern="Statement has no effect ''{0}''"
 />
 </checker>
</extension>

14

Internal Checker – Example (Code)

public class StatementHasNoEffectChecker extends AbstractIndexAstChecker {
private static final String ER_ID =
"org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem"; //$NON-NLS-1$

public void processAst(IASTTranslationUnit ast) {
 ast.accept(new CheckStmpVisitor());
}

class CheckStmpVisitor extends ASTVisitor {
 CheckStmpVisitor() {
 shouldVisitStatements = true;
 }

 public int visit(IASTStatement stmt) {
 if (stmt instanceof IASTExpressionStatement) {
 if (hasNoEffect(((IASTExpressionStatement) stmt).getExpression())) {
 reportProblem(ER_ID, stmt);
 }
 }
 return PROCESS_SKIP;
}
…

See full code of this checker in codan project:
org.eclipse.cdt/codan/org.eclipse.cdt.codan.checkers/src/org/eclipse/cdt/codan/internal/checkers/StatementHasNoEffectChecker.java

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cdt/codan/org.eclipse.cdt.codan.checkers/src/org/eclipse/cdt/codan/internal/checkers/StatementHasNoEffectChecker.java?root=Tools_Project&view=markup

15

How to create External Checker

 If tool is integrated with a make base build system already
 Either a) adjust tool output to match one of the recognized error

patterns (such as gcc)
 b) create an error parser for your tool using an API or UI

 If you want user to control problem profile for the tool
 Create a “checker” for the tool you running
 Register problems or group of problems tools creates
 Add a listener for profile changes to generate external problems

profile that can be used by the tool
 If tool is not integrated with make implement a checker as

launcher of tool (get projects option such as includes and defines
from CDT)

 Extend problems view to show addition problem
information/documentation

16

What API provided to aid in writing a checker

Usually static analysis checkers use one or more of the following
software models:

 File Text – platform/java
 Token list – CDT - scanner and preprocessor
 Comments – CDT - scanner
 Language AST – CDT - parser
 Bindings – provided by CDT - indexer
 Control Flow Graph – CDT - codan
 Data Flow Graph – todo in codan
 Call Graph – CDT - indexer
 Abstract Checker classes – CDT - codan

17

Questions?

http://wiki.eclipse.org/CDT/designs/StaticAnalysis

	Embedded Rich Client Platform (eRCP) 1.0 Release Review
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

