
1

Codan: a C/C++ Static Analysis Framework for CDT

Alena Laskavaia
September, 2010

2

Agenda

Codan – stands for - “Code Analysis”

 An overview of the framework
 The user interface
 The development status
 How to create and integrate a simple internal checker
 How to integrate external tool such as lint
 What API provided to aid in writing a checker

3

Goal

To create a common components and API that are shared
between static analysis tools, such as:

 User Interface to control the Problems enablement and parameters
 Different launch modes (as you type, on demand, as a builder)
 A view to display additional problem information
 Generic Marker type for problems with extra fields
 API to log the problems
 Abstract classes for checkers
 Sample checkers
 JUnit testing framework

Besides the framework there is also a “Checkers Feature” which
has few implemented checkers and quick fixes

4

Codan Users

 Tool Vendors
 To create plugins containing end-user checkers and templates

 Software Architects, Process Enforcement people
 To create customized new checkers, based on templates (no

programming involved)
 To create problems profiles

 Developer, Tester, Code Inspector
 To check for errors as you type and have a quick way to fix them,

during development
 To find bugs, security violations, API violations, coding standard

violations during debugging, testing, code inspection or before
code commit

5

Architecture

Profile Editor
(Preferences)Launch Control Problem Details

(View)

Builder Registry Reporter

CheckerCheckerChecker

Markers

6

Plugins

Plugins in /cvsroot/tools/org.eclipse.cdt/codan

 org.eclipse.cdt.codan-feature – codan feature
 org.eclipse.cdt.codan.core – generic core components, registry, builder, abstract

checkers, all model interfaces
 org.eclipse.cdt.codan.core.cxx – C/C++ specific core components, abstract

checkers, etc
 org.eclipse.cdt.codan.checkers – actual C/C++ cherckers
 org.eclipse.cdt.codan.checkers.ui – UI support for specific checkers, such as

quick fix, parameter controls, detail view controls, etc
 org.eclipse.cdt.codan.ui – generic UI, preferences, launch, etc
 org.eclipse.cdt.codan.ui.cxx – specific C/C++ ui control, such CEditor listeners
 org.eclipse.cdt.codan.core.test – junit testing framework and tests for checkers
 org.eclipse.cdt.codan.examples – examples of checkers

7

Profile Editor (Problem Preferences)

 Either checker enabled or not
 Severity of the Problem
 Info – description, message
 Customization: edit message,

parameters, scope

8

Launch Control

Run on demand from context menu Run with Build

Run as you type

9

Problem Markers & Quick Fix

 Codan problem markers
 Categories for grouping
 Quick Fixes
 Special menu commands:

Customize...,Show in
Problem Details view

10

 Released in CDT 7.0 as optional feature
 Framework Features

 Pluggable checkers, base classes for generic checker and C/C++
AST checkers

 Customizable problems with severity, enablement, categories
 Parametrized checkers (limited ui support)
 Problem details view (extendable)

 Only handful of checker available for end-users

CDT 7.0

11

Development Status CDT 8.0

 Framework
 Generic framework for Quick Fix

 Base classes for simplified junits (code samples are read from comments)

 Better support for marker generation (tries to update markers instead of
delete/insert)

 Common scope filters for checkers (excluded/included files)
 Checker & Quick Fixes

 Added Problem Binding checker (which produces dozens of problems) and
Quick Fixes such as “Create Local Variable”, etc

 Added assignment to itself checker

12

How to create Internal Checker

 Define a problem
 Pick a model that can be used to find a problem, i.e. Index, AST,

Control Flow Graph, Data Flow Graph, Call Graph
 Extend abstract checker that supports a given model, and

implement a check (currently supported: No Model, Indexer,
C/C++ AST, Control Flow Graph)

 Create extension to define your checker and problem(s) it can
find, define a new category or assign to existing one

 Create a quick fix for the problem (optional)
 Create a documentation/description of a problem and integration

into extension
 Creation extension to problem view (optional)
 Create a junit test cases

13

Internal Checker – Example (Extension)

<extension
 point="org.eclipse.cdt.codan.core.checkers">
 </checker>
 <checker
 class="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectChecker"
 id="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectChecker"
 name="StatementHasNoEffectChecker">
 <problem
 category="org.eclipse.cdt.codan.core.categories.ProgrammingProblems"
 defaultSeverity="Warning"
 id="org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem"
 name="Statement has no effect">
 messagePattern="Statement has no effect ''{0}''"
 />
 </checker>
</extension>

14

Internal Checker – Example (Code)

public class StatementHasNoEffectChecker extends AbstractIndexAstChecker {
private static final String ER_ID =
"org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem"; //$NON-NLS-1$

public void processAst(IASTTranslationUnit ast) {
 ast.accept(new CheckStmpVisitor());
}

class CheckStmpVisitor extends ASTVisitor {
 CheckStmpVisitor() {
 shouldVisitStatements = true;
 }

 public int visit(IASTStatement stmt) {
 if (stmt instanceof IASTExpressionStatement) {
 if (hasNoEffect(((IASTExpressionStatement) stmt).getExpression())) {
 reportProblem(ER_ID, stmt);
 }
 }
 return PROCESS_SKIP;
}
…

See full code of this checker in codan project:
org.eclipse.cdt/codan/org.eclipse.cdt.codan.checkers/src/org/eclipse/cdt/codan/internal/checkers/StatementHasNoEffectChecker.java

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cdt/codan/org.eclipse.cdt.codan.checkers/src/org/eclipse/cdt/codan/internal/checkers/StatementHasNoEffectChecker.java?root=Tools_Project&view=markup

15

How to create External Checker

 If tool is integrated with a make base build system already
 Either a) adjust tool output to match one of the recognized error

patterns (such as gcc)
 b) create an error parser for your tool using an API or UI

 If you want user to control problem profile for the tool
 Create a “checker” for the tool you running
 Register problems or group of problems tools creates
 Add a listener for profile changes to generate external problems

profile that can be used by the tool
 If tool is not integrated with make implement a checker as

launcher of tool (get projects option such as includes and defines
from CDT)

 Extend problems view to show addition problem
information/documentation

16

What API provided to aid in writing a checker

Usually static analysis checkers use one or more of the following
software models:

 File Text – platform/java
 Token list – CDT - scanner and preprocessor
 Comments – CDT - scanner
 Language AST – CDT - parser
 Bindings – provided by CDT - indexer
 Control Flow Graph – CDT - codan
 Data Flow Graph – todo in codan
 Call Graph – CDT - indexer
 Abstract Checker classes – CDT - codan

17

Questions?

http://wiki.eclipse.org/CDT/designs/StaticAnalysis

	Embedded Rich Client Platform (eRCP) 1.0 Release Review
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

