Longer-Term Security for Low-Power loT Software

Longer-Term Security for Low-Power loT Software

Eclipse loT Day 2023

Emmanuel Baccelli
Inria & FU Berlin

2 LR _— Freie Universitit '\\M Berlin

Longer-Term Security for Low-Power loT Software The Internet of Things (loT)

IO T

DIV YOU KHOW THE 'S’
N 1.0.T. 1S FoR SECURITY 7

BUT...THERE IS HO'S'
IN 1OT 27

EXACTLY
MY POINT.
N Y

Longer-Term Security for Low-Power loT Software loT: Cyber-Attack Surface

Source: H. Tschofenig, E. Baccelli, “Cyber-Physical Security for the Masses:
Survey of the IP Protocol Suite for loT Security,” IEEE Security & Privacy, 2019

LEVEL?
Cyberphysical Attacks

« Chain reactions

- Extended functionality
LEVEL3 ..

Hardware Attacks Main focus in this talk: defend against
Sklechanne anaysis % communication attacks;

* Fault injection
LEVEL 2 % software attacks;

Software Attacks
- Buffer overflow

- Malware
LEVEL1 :

Communication Attacks
+ Man-in-the-Middle
- Sinkhole

Longer-Term Security for Low-Power loT Software

loT is everywhere...

In virtually all verticals: predictive maintenance
(Industry 4.0), smart health, (token) contact tracing,
connected vehicles ECUs, smart home/building,
precision agriculture, TinyML etc.

... and loT depends upon low-power devices.
Low-power devices are used in more varied use
cases. They run increasingly complex software.

The Internet of Things (loT)

Clipart: Opentechdiary

Longer-Term Security for Low-Power loT Software Agenda

Context

Anatomy of Low-Power IoT
Firmware Update Security for Low-Power loT
Function-as-a-Service Primitives for Low-Power loT

1.
2.
3.
4.

Longer-Term Security for Low-Power loT Software Low-Power loT ?

Peripherals

What'’s low-power? Microcontrollers.
= milliWatt

-> kiloBytes

-> megaHertz

Compared to processors in “high-end” lIoT (phone, RasPi...):
=> much less capacity in computing, networking, memory;

2 Microcontroller

- much smaller energy consumption & tiny price tag (<1$). (MCU)

Some stats:
e 28 billion MCU shipped in 2018

e 250 billion microcontrollers used worldwide in 2020
Source: venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/

poppPaquUIT Xeyy :99IN0S

Longer-Term Security for Low-Power loT Software Anatomy of a Low-Power loT Device

5

Embedded System/Application software

N
)

Connectivity
(wired/wireless)

Non-volatile
memory

Processing unit

=)

Sensors Actuators
Power supply

(cabling/battery)

Source: 2018 Enisa Summer school

Longer-Term Security for Low-Power loT Software Low-Power Landscape

Low-power Hardware
% Modern 32-bit MCUs: Arm Cortex-M,
ESP, RISC-V (open source HW)...

 _
| 2 | Z h = -
-\] REC7252 ARMiF:bZ'; Low-power Wireless Networking
——— CoAP , % Hardware PHY / MAC based on BLE,
Sanee | : 802.15.4, LoRa, NB-loT, (EnOcean)...
IEEE 802.11 Bluetooth % Internet-compliant protocol stack:
"Wi-Fi" IEEE 802.15.4 - Eneray 6LOWPAN, CoAP, (COSE, OSCORE)...
TlhleS GT_I;(\:I\L;I?’%N % Interact with cloud/edge, or local devices
1
! ! 1 | >

1997 2000 2002 2005 2007 2010 2013 2016 Embedded Software

% Ecosystem of “plug-in” libs & network stacks:
Eclipse projects, mbedTLS, LVGL,
libCOSE, openThread, littleFS, uTensor...

ARM Cortex-M0O+ RISC-V % Open source operating systems: RIOT,

(off-the shelf) Contiki, mbedOS (Arm), Zephyr (Intel),

FreeRTOS (Amazon), LiteOS (Huawei)

Longer-Term Security for Low-Power loT Software Anatomy of a Low-Power loT Device

5

Embedded System/Application software

N
)

Connectivity
(wired/wireless)

Non-volatile
memory

Processing unit

=)

Sensors Actuators
Power supply

(cabling/battery)

Source: 2018 Enisa Summer school

Longer-Term Security for Low-Power loT Software loT Software Long-Term Cybersecurity?

Predicates?

1. You can’t secure what you can’t update - but updates are also attack vectors;
2. Software updates happen through the network - else they tend to not happen at all;
3. Complex software becomes composite, (tele)maintenance must be distributed.

Constraints from loT?
Ultra-small storage on device

Weak CPU
Ultra-constrained network transport N\ “ gk
... and more (memory protection, secured boot...) > \,

Minimum guarantees?
Authentication \

Integrity v e

Authorization
... and more? (roll-back, pre-conditions...)

xda-developers.com

10

Longer-Term Security for Low-Power loT Software Low-Power lIoT: The New Weakest Link?

What's a reasonable general strategy?

1. Facilitate long-term interoperability? Use (open) standards;
2. Facilitate long-term maintenance? Use open source collaborative software;
3. Quantum-level security? Minimum: software update authentication/authorization.

Pain points & Challenges for low-power |oT:
e Securing modular/multiparty software on low-power devices;

o Quantum-resistance adds to an already-tall order...
o Democratizing software updates, over low-power networks.

11

yd ST,
&ZW Freie Universitat i i

Longer-Term Security for Low-Power loT Software loT Software Udates: What’s the Deal?

Scenarios?
e Case 1 : monolithic software update, single stakeholder

e Case 2 : modular software updates, single stakeholder
e Case 3 : modular software updates, multiple stakeholders

Software -~ Software Software
- .>€"

Stakeholder 1
. Stakeholder 2

12

Longer-Term Security for Low-Power loT Software Agenda

1.
2.
3.
4.

Context

Anatomy of Low-Power loT
Firmware Update Security for Low-Power loT
Function-as-a-Service Primitives for Low-Power loT

13

Longer-Term Security for Low-Power loT Software SUIT working group at the IETF

SUIT = new architecture, metadata & serialization for lightweight loT firmware update
security : authentication, integrity checks (and more) specified at IETF, currently in
the final stages of standardization: see https://datatracker.ietf.org/wa/suit/about/

(Crypto: ed25519

PHASE 0 Maintainer (00B: Provision Public Key P) loT digital signatures
Commission device (P,S) Device SHA256 hash)
PHASE 1 -~
Build update LX) [Image]
Py
£, T In
PHASE2 [Z{ [Manifest] fee. {(Man j ¢ 29€,
— esg
Publish & sign Y PHASE 3
update GET Fetch update
PHASE 4
=1, Auth.: check sign.
IZ(Integrity: check hash
PHASE 5
o Check OK? Install.

& (Else: send alert)
14

- ST
7 A . P
hm_ Freie Universitét |

https://datatracker.ietf.org/wg/suit/about/

Longer-Term Security for Low-Power loT Software SUIT Manifest Specifications

m Latest specs for the SUIT manifest see: B. Moran et al., "CBOR-based Serialization Format for the SUIT Manifest," |ETF draft draft-ietf-suit-manifest-21, Nov. 2022.

Bugfixes
Reconfiguration
New Functionalities
Vulnerabilities Mitigation A

B Metadata about the
firmware, describing: SUIT Manifest (draft)
- Code/data payload Simple to parse
- Obtain dependencies Simple to process
, _ - Obtain payload(s) Compact encoding
Firmware Manifest - Install Comprehensible by intermediate system
& - Verify Enable advanced use cases
- Load Extensible
_ - Invoke Flexibility
- - Security primitives

15

Source: 2022 slide from Interop / Loic Dalmasso

Longer-Term Security for Low-Power loT Software SUIT Metadata Structure (Sketch)

4 .
SUIT Manifest)
/
Envelope (CBOR) Y ‘\‘\
Manifest
Reference]PRI Common Structure
p - .) . optiona
Authentication Manifests Manifest (op) Contains all information used by
Version W
. . . Where device can :
List of signatures/MACs of the manifests Sequence Number }ound the manifest the command sequences:
- * Dependencies: List of manifests
SUIT Digest Auth.Wrapper that must be present before
Contaliner COSE_Mac/S1ign (s) processing the current manifest
[Algo ID, digest]) Command Sequences (optional)
instgzctions to install & use * Components (unit of code/data):
- : 4 44!
Integrated Payloads / Dependencies g t;:i 'Sfll c12F02§22ct;genE;fl$;:
\
. Update Procedure: ;
Encrypted Manifests / Payloads, paate Dependency Resolution current manifest
Pf??hdfnS{??, b e * Payload Fetch , * Common Command Sequence: series
bkttt b fiebubitrladiiet Al) bl detnbbdubnle * Payload Installation of prior Operations to execute
Invocation Procedure: “
* Image Validation
* Image Loading
* Run/Boot
Integrity Check Values
Severable Elements F Verify integrity of metadata that 1is
not contained in the manifest
(Severable command, text ..)
- ‘/
> >,

16

Source: 2022 slide from Interop / Loic Dalmasso

v

&ZW Freie Universitit

Longer-Term Security for Low-Power loT Software Open Source Implementation of SUIT

% Integration in RIOT, see https://github.com/RIOT-OS/RIOT/tree/master/examples/suit_update
% Support out-of-the-box for ~150 boards (and ~10"5 software configs)

mmmmm

Update 32kB RAM, 256KkB Flash MCU T
Repository loT Device Image 2 ¢

T
4 & Metadata
1)) _v Imagel gg
| 1 -7 ' Metadata
i SRR Bootloader

Authentication, Integrity of
SUIT firmware update
using verified crypto (HACL*)

17

rd
7 A . PR
hm_ Freie Universitat (|

https://github.com/RIOT-OS/RIOT/tree/master/examples/suit_update

Longer-Term Security for Low-Power loT Software Experimental Evaluations of SUIT

Studies of SUIT performance for pre-quantum [1] and post-quantum [2]

* in [2] evaluation of cost of security level upgrade
o from pre-quantum 128-bit security (with ed25519 or p-256)
to NIST Level 1 post-quantum security (with Falcon, Dilithium or HSS-LMS)

@)

Benchmarks:
* using different 32-bit microcontrollers: ARM Cortex-M, RISC-V, ESP32

* using different families of PQ crypto (lattice- and hash-based)
* software update workflow => focus is *not* signature generation

Table 7: Relative cost increase for SUIT with quantum resistance (on ARM Cortex M-4).

SUIT Flash Stack Transfer Transfer w. crypto
base w. Ed25519/SHA256 | 52.4kB 16.3kB 47kB 53kB

with Falcon / SHA3-256 +120% +18% +1.1% +120%

with LMS / SHA3-256 +34% +1.2% +9% +43%

with Dilithium / SHA3-256 | +30% +210% +4.3% +34%

[1] K. Zandberg et al. Secure firmware updates for constrained loT devices using open standards: A reality check, in IEEE Access, Sept. 2019.
[2] G. Banegas et al. Quantum-Resistant Security for Software Updates on Low-power Networked Embedded Devices, in ACNS, June 2022.

18

Berlin

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8725488
https://drive.google.com/file/d/1HYC4h4_CBKaDZcckmp32UBKRN_5OLqkG/view

Longer-Term Security for Low-Power loT Software SUIT-ability: Beyond Firmware Updates?

Scenarios?

e (Case 1 : monolithic software update, single stakeholder
e (Case 2 : modular software updates, single stakeholder
e (Case 3 : modular software updates, multiple stakeholders

oo oo o0 S,
D

Module - >& @

Software - Software Software
- >‘;

Stakeholder 1
. Stakeholder 2

19

Longer-Term Security for Low-Power loT Software Agenda

1.
2.
3.
4.

Context

Anatomy of Low-Power loT

Firmware Update Security for Low-Power loT
Function-as-a-Service Primitives for Low-Power loT

20

Longer-Term Security for Low-Power loT Software Micro-Services on Microcontrollers?

Customize on-the-fly deployed loT software with additional/modifiable functions:

- Host business logic applications
- Host debug/monitoring snippets
- Host multiple functions, by different tenants

' Function

-

Operating

21

Longer-Term Security for Low-Power loT Software Micro-Services on Microcontrollers?

Threat model: we want function fault-isolation, to protect against

- Malicious tenants: Escape the sandbox?
- Malicious clients: Install-time attacks?

Attack Client
1

i " >
; Function !

Operating

Tenant

2

4 gz,
GE 20
2 LR _— Freie Universitat ({786

$

4

22

Longer-Term Security for Low-Power loT Software

Closest related works: NanoLambda, a
FaaS-like embedded engine [1]

Main limitations:

- Flash memory budget explosion
- 1000x slower than native code.

Other engine: WebAssembly (WASM)

- Promises nicer isolation...
- But similar flash budget explosion

Also: MicroPython

- Performance similar to Nanolambda

Micro-Services on Microcontrollers?

Flash usage (154 KiB total)

MicroPython

Kernel
11.0%

Libraries
5.0%

Network
13.0%

Update
5.0%

66.0%

[3]: G. George et al. "NanoLambda: Implementing Functions-as-a-Service at All Resource

Scales for the Internet of Things," IEEE/ACM Symposium on Edge Computing , 2020

23

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9355717
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9355717

Longer-Term Security for Low-Power loT Software FemtoContainer virtualization for MCUs

FemtoContainers use ultra-lightweight virtualization:
rBPF [4], the eBPF VM ported to microcontrollers

- Register-based VM

- Super small memory requirement
- Limited instruction set

- Designed as sandbox

(Allows for usage of existing compiler toolchains,
supports C, C++, Rust, any LLVM-compiled language)

[4] K. Zandberg et al. Minimal Virtual Machines on loT Microcontrollers:
The case of Berkeley Packet Filters with rBPF, in PEMWN, Dec. 2020

femto-Container

High-level
Software
Low-level
Software

I

Hardware

24

https://arxiv.org/pdf/2011.12047.pdf
https://arxiv.org/pdf/2011.12047.pdf

Longer-Term Security for Low-Power loT Software Femto-Containers: Implementation

- Real-Time OS (RTOS) syscalls FemtoContainers

- Allows & controls sensor interaction, network services CoAP endpomts
- Reference implementation in RIOT, available at:
https://github.com/future-proof-iot/Femto-Container_tutorials

High-level
Software
- Femto-container(s) exposed as CoAP resources ﬁ
- Trigger container applications via networked endpoints Low-level
Software
- SUIT-compliant software updates ﬂ
- OTA updates of containerized microservices over CoAP Hardware
- Femto-Container hosting engine = only 1000 LoC (!)
- allowed formal verification [5] for fault-isolation femto-Container
[5] S. Yuan et al End-to-end Mechanized Proof of an eBPF 25

Virtual Machine for Microcontrollers, in CAV, Aug. 2022

https://github.com/future-proof-iot/Femto-Container_tutorials
https://www.irisa.fr/prive/talpin/papers/cav22.pdf
https://www.irisa.fr/prive/talpin/papers/cav22.pdf

T Te [Ty =T RSTETTTT A Co T MOVE (VTR L ST LI Experimental Evaluation

Flash usage (154 KiB total)

......

Performance study [6] on Cortex-M, ESP32, RISC-V

uuuuu

=> Compared to native exec., memory overhead is 10% or less!

Flash usage (57 KiB total)

Femto-Container

ROM requirement
B BPF W Femto-Container [l CertFC

8.0%
5000
Update Kernel
14.0% 30.0%
4000
- 3000
Q
=
a
2 2000
x
1000 Libraries
Network 13.0%
35.0%

Cortex-M4 ESP32 RISC-V

[6] K. Zandberg et al. Femto-Containers: Lightweight Virtualization and Fault Isolation For Small

Software Functions on Low-Power loT Microcontrollers, in ACM MIDDLEWARE, Nov. 2022

rd
s o
&ZW Freie Universitit [

https://dl.acm.org/doi/pdf/10.1145/3528535.3565242
https://dl.acm.org/doi/pdf/10.1145/3528535.3565242

Longer-Term Security for Low-Power loT Software Take-away

* Long-term low-power 0T cybersecurity requires secure software updates

*x SUIT
o Is a good standard option for the security of low-power loT updates
o has open source implementation available
o was shown to as doable even with post-quantum 128-bit security (e.g. on RIOT devices)
o can secure modular update of loT software other than firmware (e.g. eBPF VMs)

* Femto-Containers and eBPF are an option for DevOps on low-power loT

27

Pl S
, e tniversia Tl B
2 LR _— Freie Universitat [rin

Défi Inria RlOT-fp Online: https://future-proof-iot.qithub.io/RIOT-f

“M"—_-
. i

‘ | Party
J

(sandbox)

OS
Next-level cybersecurity for loT)
Firmware Update
2) 3
F:—. - ,"' Debug info

software on ultra-low power devices.
R — METE—— Maintainer

| Context |
65
1

Open ecosystem+platform, roughly equivalent to the Linux ecosystem;
Small+safe OS perimeter, roughly equivalent to the seL4 kernel;
Quantum-resistant cybersecurity;

Modern+secure DevOps, as “easy as Amazon Lambda” over low-power networks.

Objectives
how N =

Publications: at many academic journals & conferences;
Software: jumpstart/maintenance of 10+ open source repositories (including RIOT);
Standards: several standardization docs at IETF (including one RFC already).

Teams involved: TRIBE, EVA, GRACE, TEA, CELTIQUE, PROSECCO (+ FU Berlin) lneia—

https://future-proof-iot.github.io/RIOT-fp/

Longer-Term Security for Low-Power loT Software Useful Links

THANKS! QUESTIONS? SHOOT!

Website :

https://future-proof-iot.github.io/RIOT-fp/
including full publication list at https://future-proof-iot.qgithub.io/RIOT-fp/publications

Code :

https://qithub.com/future-proof-iot
including also contribs to the RIOT code base at https://github.com/RIOT-OS/RIOT

Email :
emmanuel.baccelli@inria.fr

RIOT-fp participants include Shenghao Yuan, Gustavo Banegas, Koen Zandberg, Timothy
Claeys, Malisa Vucinic, Frederic Besson, JP Talpin, Benjamin Smith, Emmanuel Baccelli,
Kaspar Schleiser, Francisco Molina, Alexandre Abadie, Karthik Bhargavan, Denis Merigoux

https://future-proof-iot.github.io/RIOT-fp/
https://future-proof-iot.github.io/RIOT-fp/publications
https://github.com/future-proof-iot
https://github.com/RIOT-OS/RIOT

Longer-Term Security for Low-Power loT Software

30

