
Blockchain, Ethereum and
Business Applications
@ZimMatthias Matthias Zimmermann
 BSI Business Systems Integration AG

Crypto Currencies Market

Bitcoin

First decentralized digital currency
• By «Satoshi Nakamoto»
• White Paper 2008
• Open Source Software 2009

Coffee at Bob‘s

Address
Amount [B]

Name Recipient

1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA
0.015
Bob's Café

Source: «Mastering Bitcoin», Andreas M. Antonopoulos

Addresses corresponds to «Accounts»

Encoded Numbers
 Example: 1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA
 Derived from a private Key
 Private key is 256-Bit random number

Getting, using and loosing Accounts
 Create your account with «Coin, Paper and Pencil»
 No ID required, no showing up at local branch, …
 To send Bitcoins you need your private Key
 You loose your private key  you loose your money

What is a Bitcoin Address?

 Bitcoin network
 confirms coffee TX
 after ~ 10 min.

 TX Elements

The Coffee Transaction

Bob’s Address Coffee Price

My Address

Link to TX Block

Screenshot: blockchain.info

Change (back to me)

TX Fee

Coffee TX

 Block #277316
 includes coffee TX
 Block Elements

 Genesis Block

TX Blocks and the Blockchain

419 TX (€495,000)

Link to revious Block #277316

#277315

#2

#1

Screenshot: blockchain.info

Block Hash – do you see the
leading zeros?

From Transactions to Blocks (Mining)

1. New TX are propagatet through Bitcoin peer-to-peer network
2. Bitcoin client verifies new TX and adds it to local «mempool»
3. Client starts to «mine» transactions:

− Assemble TX from mempool to block candidate

− Starts to solve the block candidate’s crypto challenge

− Computes MANY hashes to solve the crypto challenge

− Client solving the challenge first, gets block reward and all TX fees

3. Winning client sends the new block to its peers

4. Arrival of new block triggers the next challenge

From Transactions to Blocks (Mining)

Creation of new Bitcoins

1.5 x 1018

IGraph: blockchain.info

Bitcoin Mining Today

 Mining-pools: Include many ASIC computers (PC way too slow)
 AntMiner: 10,000x faster than PC, burns 10x more electricity
 Energy Costs: # of hashes per KWh is central criteria + cooling(!)

Hashing Power over the Years

The Challenge
 Mining clients build block candidates independently
 Several new blocks might be found at the «same» time
 Clients may receive new blocks that are inconsistent
 The local copy of the blockchain may have forks

The Solution
 The «true» blockchain is defined by the highest cumulative PoW (difficulty)
 By selecting the greatest-difficulty chain, eventual consensus is achieved
 Miner majority vote defines the true chain
 Miners «vote» for the true chain by deciding which block/fork to extend

Distributed Consensus Mechanism
Preventing Forks

? ?

Attacking Bitcoin (any PoW Blockchain)
1. Install more mining capacity than the rest of the world (>= 51%)
2. Censor/suppress unwanted TX
3. Mine a secret branch containing acceptable TX
4. Continue to mine until PoW of secret branch exceeds official branch
5. Broadcast secret branch to Bitcoin network
6. All Bitcoin clients will switch to this new branch

Ok, this is kind of hard – but:
 Miners earn ~1.2bn/year
 HW cost to match Bitcoin mining capacity: ~ $400m (Antminer 9s)

«Unhappy with some TX?»
The 51% Attack

Current Issues
 Increasing TX backlogs
 TX confirmation can take hours (instead of 10’)
 Increasing TX fees
 «War» between Bitcoin Core and Bitcoin Unlimited (Scaling Debate)
 Decreasing market share

Bitcoin Challenges

Bitcoin Market Share

Bitcoin Price

Bitcoin Success
 Completely decentral currency (no need for central banks)
 Open Source (GitHub) and Open Data (complete TX history)
 First successful implementation of any crypto currency
 «Gold Standard» since 2009
 Record price levels

Bitcoin Challenges
 Declining market share
 Scaling debate/war

Bitcoin Recap

Bitcoin Resources

Ethereum

Decentralized Smart Contracts
• 2014 by Vitalik Buterin
• Distributed Turing complete VM
• Open source software 2014
• Is crypto currency too

Ethereum vs Bitcoin

Common Traits
 Local clients/nodes with complete blockchain (open data)
 Concepts of addresses, transactions, mining
 Virtual currency Ether
 Open source

Main Differences
 Specification with different implementations (Bitcoin: single client)
 Turing complete scripting (Bitcoin: very limited scripting)

 Ether is currency unit (1 Ether ~ 87$ 17.05.17)
 Wei is smallest denomination (10-18 Ether)
 TX mining: Proof of Work (PoW)
 Distributed consensus like Bitcoin (true chain == highest cumulative PoW)

Storing Information
 Ethereum clients: Maintain blockchain data + state data
 State data: Account balances + nonces
 Transaction data: Ether transfers

Ethereum as Virtual Currency Platform

Ethereum and App Integration

Ethereum Client
Geth/TestRPC/…

Ethereum
Peer-to-Peer Network

Interface
 http://localhost:8545 JSON-RPC

JavaScript

web3 web3j

Java

Ideal Development Setup
 Offline, repeatable, fast
 Java (this is a JUG talk after all)

We can have all this 
 Docker (repeatable, shareable)
 TestRPC (offline + local blockchain /w immediate TX confirmations)
 Web3j (Ethereum Java Library)

Ethereum Hands-on

TestRPC Docker Image

Running TestRPC
container

Open shell in container

Start node.js

TestRPC initial accounts

Get initial balance

New balance

Send 123456789 Weis

 Java implementation of JSON-RPC client API
 A couple of other features
 Android support

web3j: Ethereum and Java

web3j: Creating and Sending TX

How nonces are used
 Each account has a nonce value (account state data)
 Accounts start with nonce value 0
 TX: includes sender address and its nonce value
 TX can only be mined if:

− Account has sufficient funds

− TX nonce == current account nonce

 If TX is mined successfully: Nonce increased by 1

Ethereum Accounts and Nonces

What is gas?
 Special unit to pay fees to mining nodes
 Gas has price in Ethers (decouples computing costs and Ether price)

What fees?
 Computations performed by Ethereum Virtual Machine (EVM)
 EVM is working as long as there is gas
 Example 1: SHA3 computation costs 30 gas
 Example 2: EVM always terminates (stays in infinite loop until gas runs out)

Ethereum, Gas and TX Fees

Smart Contracts

What is a Smart Contract?
 Piece of (byte) code
 Is executed by the Ethereum Virtual Machine (EVM)
 Has an owner
 Has a life cycle
 Might have some purpose

Examples
1. The DAO
2. Flight delay insurance
3. «Truly» autonomous cars

Ethereum Smart Contracts

 Distributed venture capital fund
 Amount raised $150,000,000
 Largest crowdfunding project
 Successfully «attacked»

Attack Result: Ethereum hard fork

 ETH «true» blockchain

 ETC «forked» blockchain

The DAO (2016)

 Involves Oraclize service to access flightstats.com

Flight Delay App

 Smart contract to ordering vehicle to transport goods/people
 Smart contract to pay for energy/services

«Truly» Autonomous Cars

Deploying and using Smart Contracts
1. Write contract in high level language (eg. Solidity)
2. Compile contract to EVM byte-code
3. Pack byte code into a contract creation TX and sent to the network
4. The TX gets ist own contract account
5. Contract account has address, balance, nonce and holds byte code
6. Invoke methods using calls (free) or transactions (cost gas)

Smart Contracts Life Cycle

«Hello World» (greeter.sol)

greeter.sol ++
- additional state

- ‘payable’

Solidity Compiler (online)

byte code (EVM)
to deploy contract

Deploy script (JS)

Deploy (Console)

Contract address

Successs 

From Solidity to Java Contract Class

1. Compile greeter.sol (e.g using online compiler)

 greeter.bin, greeter.abi

2. Create contract wrapper class (use Web3j command line tool)

 Greeter.java

1. Use Greeter.java in your Java code

web3j: greeter.sol  Greeter.java

Generated Contract Wrapper

Live Cycle in Java

Deployment

Trading-Network Demo
Ethereum, web3j, Eclipse Scout

Use Case
 Currency Hedging: Buy orders and Sell orders (€ / US$)

 Classical Business App

− Idendity Management for mapping real persons BC addresses

− User Interface

 Blockchain Benefits

− Efficiency: No central organization/infrastructure

− Trust: Tampering-proof ledger, trust by blockchain

Trading Network Demo

 Plain Java Application Model
 Multi-Device Support
 HTML5/CSS3 Rendering

Eclipse Scout
Business Application Framework

PostgreSQL

Ethereum Client
TestRPC

web3

Eclipse Scout
Backend

web3j JDBC

Eclipse Scout
UI (web application)

Resources

What next?

Gist
 Cool new technology, including much hype 
 Internet of decentralized trust

Blockchain Technology is great for
 Efficient value exchange for untrusted environments
 Pushes distributed business models
 Option for the «unbanked»

Current Challenges
 Privacy
 Scalability
 Maturity (blockchain still in ist infancy)

Blockchain Summary

Socalizing
 Go to talks
 Join meetups (Bitcoin Meetup Switzerland, Blockchain Meetup Switzerland,
 Crypto Valley Forum, …)

Increase Context
 Youtube, Blogs, Twitter, …

Doing
 GitHub (web3j/web3j, matthiaszimmermann/web3j_demo, …)

Next Steps

«Recipe»
1. Curious about new technologies? Take yourself seriously!
2. Invest some of your time
3. Take advantage of your education options (time, money, …)
4. Building small teams makes it even more fun
5. Create value for your employer (internal, external)
6. Do it!

Everybody can do this 

Thanks!
@ZimMatthias

