
© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA
ITEA2 project (ID 01IS11020E) and is released on the Eclipse Auto IWG.

BTF-Specification
Version History

Version Author Datum Description

V1.0 [Timing-Architects] 2011-07-18 Initial specification approved with thanks by
Continental Automotive GmbH, extended by
source-entity-instance column

V2.0 [Timing-Architects] 2012-04-17 Added new data types

V2.0.1 [Timing-Architects] 2013-03-29 Added state charts and description of all entities

V2.0.2 [Timing-Architects] 2013-04-22 First public release

V2.1.0 [Timing-Architects]
[Robert Bosch

GmbH]

2013-06-18 - Changed Process State Chart for compliance
to OSEK 2.2.3 Extended Task Model
- Some improvements of description

V2.1.1 [Timing-Architects] 2013-10-30 Clarified description and examples regarding
difference preempt/suspend for
processes/runnables.

V2.1.3 [Timing-Architects] 2014-04-10 Process state chart: changed layout according
to OSEK state order. First published version.

Note: In version key V x.x.y, x represents change in BTF, y is only specification update.

License Disclaimer

 BTF is accessible to everyone free of charge.

 BTF and Timing-Architects Embedded Systems GmbH do not favor one implementer over another for any reason other

than the technical standards compliance of a vendor’s implementation.

 BTF is published under royalty-free terms

 BTF remains accessible and free of charge

 BTF is accessible free of charge and documented in all its details (i.e. all aspects of the standard are transparent and

documented, and both access to and use of the documentation is free)

 BTF is free for all to implement, with no royalty or fee. Certification of compliance by Timing-Architects Embedded

Systems GmbH may involve a fee.

 BTF implementations may be extended, or offered in subset form. However, certification organizations may decline to

certify subset implementations, and may place requirements upon extensions

 BTF extensions have to be integrated in BTF and published under this open format license.

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

2

CONTENT
1. List of Figures ... 2

2. List of Tables .. 2

1. Introduction ... 3

2. Structure of BTF-File .. 4

2.1. Header .. 4

 Comments .. 4 2.1.1.

 Parameters ... 4 2.1.2.

2.2. Data Section ... 6

2.3. Entities and Events .. 7

 Stimulus-Events .. 9 2.3.1.

 Process-Events (Task- and ISR-Events) ... 10 2.3.2.

 Runnable Events ... 13 2.3.3.

 Signal-Events .. 14 2.3.4.

1. LIST OF FIGURES

Figure 1: Schematic visualization of interaction between two entity instances. ... 3

Figure 2: Gantt Chart of Example. Dark green areas show execution of Task or Runnable. Light green areas

show Tasks/Runnables in Preempt/Suspended state. ... 9

Figure 3: Process state Chart. ... 10

Figure 4: Gantt Chart of Example. Dark green areas show execution of Task. Light green areas show Tasks in

Preempt state. .. 12

Figure 5: Runnable state chart.. 13

2. LIST OF TABLES
Table 1: Parameters for BTF header section .. 4

Table 2: Description of BTF columns .. 7

Table 3: Entity Types. .. 8

Table 4: Columns for Stimulus entity. ... 9

Table 5: Columns for Process entity. .. 10

Table 6: States for Process Entity. .. 11

Table 7: Events for Process entity. .. 11

Table 8: Info Events for Process entity. .. 12

Table 9: Columns for Runnable Entity. ... 13

Table 10: States for Runnable Entity. ... 13

Table 11: Events for Runnable Entity. ... 14

Table 12: Columns for Signal Entity. ... 14

Table 13: Events for Signal Entity. .. 14

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

3

1. INTRODUCTION
This document specifies a tracing format for timing evaluation of event based systems. The BTF (Best
Trace Format, originating from Better Trace Format (BTF V1.0)) is a CSV-based format for representation
of event-traces in ASCII. BTF is a format definition for full scale timing traces of simulator and profiling
tools.

The Best Trace Format (BTF) is based on the Better Trace Format, initially defined by Continental
Automotive GmbH. It allows analyzing the behavior of a system in a chronologically correct manner in
order to apply timing, performance, or reliability evaluations. In general, it assumes a signal processing
system, where one component of the system notifies another component of the system. These
notifications are realized by events, stored in the BTF file. In comparison with compact trace formats from
debugger traces, a BTF log of an event includes the entire information, namely: which component
interacts with which component by an event.
Advanced scheduling concepts may be used in multicore processor systems where one traced

component may have multiple instances at the same time, i.e. global scheduling or task migration

concepts. This requires instance identification in order to derive which instance of a component is

addressed in the event log. This means for example that each task execution can be exactly identified

for the complete lifetime from activation till termination by its component name and instance counter.

The following figure shows the interaction between two component instances, where component Name1

(Instance #21452) sends an event X to component Name2 (Instance #124) at t=1200025. A component

instance is generated from its parent component and duplicates its behavior (e.g. execution time

according to a certain sequence). Nevertheless, it may be possible that a component instance exists

over the complete traced time interval.

FIGURE 1: SCHEMATIC VISUALIZATION OF INTERACTION BETWEEN TWO ENTITY INSTANCES.

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

4

2. STRUCTURE OF BTF-FILE
A BTF-file consists of two parts:

1. A header-section, containing meta-information on objects of the trace and optional comments.

All lines start with a ‚#‘. The meta-information is described by pragma-statements (see Section
2.1.2). Comments contain directly after the ‘#’-symbol a space, which allows the differentiation
from pragma-statements.

2. A data-section, containing the trace-data of the simulation or measurement.

The data-section consists of lines in CSV format with optional comment-lines. Each line
represents one event of the traced system. The columns of the event-line describe the time,
entities, and event. Comments are defined as in the header-section.

For the representation of the data-sections two ways exist. The symbolic-mode describes entities and
event by names. The numeric-mode describes entities and event by a numerical identifier. In this case,
the header-section includes the mapping between numerical identifier and a string of the name.

2.1. HEADER

The header includes parameters, used for the interpretation of the trace or information of the trace
generator, and comments. Parameters and comments are indicated by a ‘#’-symbol.
The typical header of a BTF-file includes at least the version, creator, creation date and the time scale.
Further information is optional.

 COMMENTS 2.1.1.
Each row, starting with a ‘#‘-symbol which is followed with a whitespace is a parameter. Comments can
be part of the header or can be entered at any position of the data section.

 PARAMETERS 2.1.2.
Each row, starting with a ‘#‘-symbol and one of the following parameter definitions is a parameter.
The parameter definition may not start with a whitespace. When the symbol ‘-‘ follows the ‘#’ symbol, the
row is an entry of the last defined table (e.g. typeTable). Following parameter definitions are predefined:

TABLE 1: PARAMETERS FOR BTF HEADER SECTION

Parameter Description Type Example

#version Version of BTF format

definition

String #version 1.0

#creator

Name and version of the

program or device,

which generated the

trace

String #creator TA-Simulator (12.10.2.47)

#creationDate

Timestamp of the start of

simulation or

measurement. The

format has to comply

with "ISO 8601 extended

specification for

representations of dates

String (ISO 8601) #creationdate

2012-09-02T16:40:30Z

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

5

and times" YYYY-MM-

DDTHH:MM:SS. The

time should be in UTC

time (indicated by a “Z”

at the end)

#inputFile Filename of the model

which was used for the

simulation

String (URI) #inputFile

D:\Workspace\Project\DualCore.rte

#timescale Defines the resolution of

the timestamps in the

trace. Default unit is

nano-seconds (ns).

String

(Enumeration

[ps,ns,us,ms,s])

#timescale ns

#typeTable Indicates the beginning

of a mapping from all

entities to a numerical

Type-Id. See Table 3 for

existing types.

Type-Ids start with 0.

Missing Ids are allowed

-<n> String #entityType

#-0 T

#-1 R

#-2 SIG

#entityTable <n> Indicates the beginning

of a mapping from all

entities to a numerical

Entity-Id. An entity can

be a task, runnable, etc.

Type-Ids start with 0 and

some Ids can be

missing.

-<n> String #entityTable

#-0 Task_1ms

#-1 GetSignal

#-2 Main

#-3 Temperature

#entityTypeTable

<n>

Indicates the beginning

of a mapping from all

entities to types. Both,

entity and type has to be

defined before in the

entityTable and

entityTable.

-<n> String #entityTypeTable

#-T Task_1ms

#-R GetSignal

#-R Main

#-SIG Temperature

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

6

Example:

A typical header can look in the following way:

2.2. DATA SECTION

The trace information is represented in CSV format. Each line describes one event. The interpretation of
one line depends on the event type, shown in the next section.

For separating the content of one line the symbol ‘,’ (comma) is used. For the case using floating
numbers, a ‘.’ (point) has to be used as decimal separator. Strings can be written between quotation
marks ‘”’. For strings with space characters writing in quotation marks is forced.

At any point of the trace section, a comment with pragma ‘#’ can be written.

#version 1.0
#creator TA-Toolsuite 12.06.1
Simulation of dualcore processor 120MHz, 16Kbyte RAM
#creationDate 2012-08-31T15:53:00
#inputFile c:\TAsc\doc\examples\ems.tap
#timeScale ns
#entityType

#-0 T

#-1 R

#entityTable

#-0 Task_1ms

#-1 Task_2ms

#-2 Runnable_1ms_Init

#-3 Runnable_2ms_Store

#-4 Runnable_2ms_Read

#entityTypeTable

#-T Task_1ms

#-T Task_2ms

#-R Runnable_1ms_Init

#-R Runnable_2ms_Store

#-R Runnable_2ms_Read

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

7

2.3. ENTITIES AND EVENTS

The data section consists of line by line interpreted data. Each line has eight columns, whereas the last
column is optional. A line contains the following elements:

<Time>,<Source>,<SourceInstance >,<TargetType>,<Target>,<TargetInstance>,<Event>,<Note>

The interpretation of the different columns depends on the <TargetType>-column.

TABLE 2: DESCRIPTION OF BTF COLUMNS

Colum

n

Name Description Relevant for

entity type

1 Time Integer timestamp for one action. The timescale is given in

the configuration section by the parameter #timescale.

all

2 Source Unique name for the source which triggers the event.

(e.g. Core at start of a task or stimulus at the activation of a

task)

all

3 SourceInstance Instance counter for the source. Non-instanceable entities

(e.g. core) have each time the instance ‘-1’. Instanceable

entities like stimuli starting with 0 and increment at each

instantiation the counter. If there is no information for the

instance this field can be empty.

all

4 Type Type of the event target. all

5 Target Unique name for the target, which triggers the event (e.g. a

task, runnable, signal-access).

all

6 TargetInstance Instance counter for the target. all

7 Event Name of the event all

8 Note Optional field for further information (e.g. signal value at

signal read or write access)

SIG, SEM

The fourth column (<TargetType>) includes the type of the event. Following types are defined in the BTF:

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

8

TABLE 3: ENTITY TYPES.

Category Type-ID Name Description
Environment
 STI Stimulus Trigger point for a Task or ISR
Software
 T Task

(Specialization of Process)

Object handled by OS
Scheduler, and calling all
“Top-Level” Runnables. A
Task is the specialization of a
Process type.

 ISR Interrupt-Service-Routine

(Specialization of Process)

Object handled by Interrupt-
Management Unit and calling
all “Top-Level” Runnables. An
ISR is the specialization of a
Process type.

 R Runnable Object, called by a Process or
another Runnable.

 IB Instruction block Sub-fraction of a Runnable
Hardware
 ECU Electronic Control Unit Hardware device which has at

least one processor.

 P Processor Hardware device which has at
least one core

 C Core Hardware device which is part
of a processor and executes
software.

Operating System
 SCHED Scheduler Part of operating system

which assigns processes to
cores.

 SIG Signal Shared data object (e.g.
variable) in a software.

 SEM Semaphore Operating system object, for
restricting access to
resources.

Information
 SIM Simulation Used for notification events

from simulation environment,
e.g. simulation started or
simulation stopped.

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

9

Example:

Gantt-Chart of Example

FIGURE 2: GANTT CHART OF EXAMPLE. DARK GREEN AREAS SHOW EXECUTION OF TASK OR RUNNABLE. LIGHT GREEN AREAS SHOW

TASKS/RUNNABLES IN PREEMPT/SUSPENDED STATE.

 STIMULUS-EVENTS 2.3.1.

A stimulus is used to model external inputs or internal behavior, which is not modeled by other software

or hardware parts. A stimulus is able to activate a task/ISR or set a signal value.

TABLE 4: COLUMNS FOR STIMULUS ENTITY.

Column Entries

<Source> Simulation (SIM), Task (T) or ISR (ISR)

<Event> trigger

Example:

0, Task_A, 0, T, Task_A, 0, activate

100, Core_1, 0, T, Task_A, 0, start

100, Task_A, 0, R, Runnable_A_1, 0, start

6766, Task_A, 0, R, Runnable_A_1, 0, terminate

6766, Task_A, 0, R, Runnable_A_2, 0, start

10000, Task_B, 0, T, Task_B, 0, activate

10100, Task_A, 0, R, Runnable_A_2, 0, suspend

10100, Core_1, 0, T, Task_A, 0, preempt

10100, Core_1, 0, T, Task_B, 0, start

10100, Task_B, 0, R, Runnable_B_1, 0, start

16766, Task_B, 0, R, Runnable_B_1, 0, terminate

16766, Core_1, 0, T, Task_B, 0, terminate

16866, Core_1, 0, T, Task_A, 0, resume

16866, Task_A, 0, R, Runnable_A_2, 0, resume

20199, Task_A, 0, R, Runnable_A_2, 0, terminate

20199, Core_1, 0, T, Task_A, 0, terminate

 1200150, TASK_InputProcessing, 0, STI, IPA_InputReady, 0, trigger
 1200237, SIM, -1, STI, IR_SCHED_Tasks_C1, 7, trigger
 1222581, SIM, -1, STI, IR_SCHED_Tasks_C1, 8, trigger
 2239187, TASK_InputProcessing, 1, STI, IPA_InputReady, 1, trigger
2250000, SIM, -1, STI, TIMER_1ms, 2, trigger

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

10

 PROCESS-EVENTS (TASK- AND ISR-EVENTS) 2.3.2.
A process can be either a task or an interrupt service routine. A process is activated by a stimulus, as
described in section 2.3.1. After activation, a scheduler assigns the process to a core where the process
is executed. A running process can be preempted by another process and change to READY.
Alternatively, a cooperative process can change itself to READY, e.g. at a schedule point or explicit
migration to another core. When a running process requests a resource (e.g. semaphore or event) which
is not available, the process waits actively (e.g. “while(ResourceNotAvailible){…}”). This is indicated by the
state POLLING. The scheduler could decide to remove a waiting process from the core and the process
changes in state PARKING (passive waiting). When the requested resource becomes available but the
process is in state parking, the process changes again to state READY.

FIGURE 3: PROCESS STATE CHART.

Note: Whenever process (P) is used in the following description, this can either be a task (T) or interrupt-
service-routine (ISR)

TABLE 5: COLUMNS FOR PROCESS ENTITY.

Column Entries

<Source> Stimulus (STI), Core (C), process (P)

<Event> activate, start, preempt, resume, terminate, poll, run, park, poll_parking,

release_parking, wait, release, deadline, mpalimitexceeded, boundedmigration,

phasemigration, fullmigration, enforcedmigration

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

11

TABLE 6: STATES FOR PROCESS ENTITY.

State Description

ACTIVE When instance is ready for execution

RUNNING When instance executes on a core

READY When instance was preempted

WAITING When instance has requested an OS Event which is not available and waits passively

POLLING When instance has requested a resource which is not available and waits actively

PARKING When instance waits for a not available resource and is preempted

TERMINATED When instance was finished execution

TABLE 7: EVENTS FOR PROCESS ENTITY.

Internal Event Description Source

ACTIVATE Process instance is activated by a stimulus STI, P

START Process instance is allocated to the core and starts execution

for the first time

C

PREEMPT Executing process instance is stopped by the scheduler, e.g.

because of a higher priority process which is activated.

C

RESUME Preempted process instance continues execution on the same

or other core.

C

TERMINATE Process instance has finished execution C

POLL Process instance has requested a resource by polling (active

waiting) which is not available

C

RUN Process instance resumes execution after polling (i.e. active

waiting) for a resource

C

PARK Active waiting process instance is preempted by another

process.

C

POLL_PARKING Parking process instance is allocated to the core and again

polls (i.e. actively waits) for a resource.

C

RELEASE_PARKING Resource which is requested by parking process instance

becomes available, but parking process stays preempted and

changes to READY state.

C (last Core)

WAIT Process has requested a non-set OS EVENT (see OSEK 2.2.3
Extended Task Model, WAIT_Event()).

C (last Core)

RELEASE OS EVENT which was requested by a process is set (see OSEK 2.2.3 Extended Task
Model, SET_Event()) and process is ready to proceed execution.

C (last Core)

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

12

TABLE 8: INFO EVENTS FOR PROCESS ENTITY.

Notification-Event Description

MPALIMITEXCEEDED When there are more process instances of this process as the MPA-LIMIT

value (MPA = MultipleProcessActivation)

BOUNDEDMIGRATION When last executing core of previous instance is not equal to first executing

core of this instance.

PHASEMIGRATION When the executing core before a preemption is not equal to the new

executing core and there is no schedule point right before this execution.

FULLMIGRATION When the executing core before a preemption is not equal to new executing

core and there is a schedule point right before this execution.

ENFORCEDMIGRATION When a process migrates at a predefined position in execution to another

scheduler.

Example:

The example shows the activation of TASK_InputProcessing, triggered by a timer.
TASK_InputProcessing starts execution and is preempted by task TASK_1MS, also triggered by a timer.
After TASK_1MS has finished execution, TASK_InputProcessing resumes execution.

FIGURE 4: GANTT CHART OF EXAMPLE. DARK GREEN AREAS SHOW EXECUTION OF TASK. LIGHT GREEN AREAS SHOW TASKS IN PREEMPT

STATE.

6150000, TIMER-A_2ms, 3, T, TASK_InputProcessing, 3, activate

6150100, Core_1, 0, T, TASK_InputProcessing, 3, start

6250000, TIMER-1MS, 6, T, TASK_1MS, 6, activate

6250100, TASK_1MS, 6, STI, IR_SCHED_Tasks_C1, 24, trigger

6250100, Core_1, 0, T, TASK_InputProcessing, 3, preempt

6250100, Core_1, 0, T, TASK_1MS, 6, start

6721825, Core_1, 0, T, TASK_1MS, 6, terminate

6721925, Core_1, 0, T, TASK_InputProcessing, 3, resume

7110175, Core_1, 0, T, TASK_InputProcessing, 3, terminate

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

13

 RUNNABLE EVENTS 2.3.3.
A runnable is called within a process instance or in the context of another runnable. When a runnable is

called, it starts and changes to RUNNING. When the process instance which includes the runnable is

suspended, the runnable itself is also suspended and changes to state SUSPENDED. When the process

instance is resumed, the runnable also changes to RUNNING. After complete execution, the runnable

changes to TERMINATED.

RUNNING SUSPENDED

NOT

INITIALIZED

START

SUSPEND

RESUME

TERMINATE

TERMINATED

FIGURE 5: RUNNABLE STATE CHART.

TABLE 9: COLUMNS FOR RUNNABLE ENTITY.

Column Entries

<Source> Process (P)

<Event> start, suspend, resume, terminate

TABLE 10: STATES FOR RUNNABLE ENTITY.

State Description

RUNNING Runnable instance executes on a core

SUSPENDED Runnable instances has stopped execution on a core

BTF-Specification V2.1.3

© Timing-Architects Embedded Systems GmbH
This specification was extended in the context of the AMALTHEA ITEA2 project (ID 01IS11020E)
and is released on the Eclipse Auto IWG.

14

TABLE 11: EVENTS FOR RUNNABLE ENTITY.

Events Description Source

START Runnable instance is allocated to the core and starts execution

for the first time.

P

SUSPEND Executing runnable instance is stopped, because the calling

process is suspended.

P

RESUME Suspended runnable instance continues execution on the same

or other core.

P

TERMINATE Runnable instance has finished execution. P

The runnable R_T20_O2 is started and preempted by runnable R_T1_Init. After termination of R_T1_Init,
runnable R_T20_O2 resumes execution.

 SIGNAL-EVENTS 2.3.4.
A signal is a label, which can be accessed by a process instance.

TABLE 12: COLUMNS FOR SIGNAL ENTITY.

Column Entries

<Source> Process (P), Stimulus (STI)

<Event> read, write

TABLE 13: EVENTS FOR SIGNAL ENTITY.

Events Description Source

READ Signal is read by a process P

WRITE Signal is written by a process or a stimulus P, STI

Example:

3232706, TASK_20MS, 0, R, R_T20_O2, 0, start,

3250100, TASK_20MS, 0, R, R_T20_O2, 0, suspend,

3250100, TASK_1MS, 3, R, R_T1_Init, 3, start,

3326368, TASK_1MS, 3, R, R_T1_Init, 3, terminate,

3714350, TASK_20MS, 0, R, R_T20_O2, 0, resume,

3740812, TASK_20MS, 0, R, R_T20_O2, 0, terminate,

1222481, STI_MODE_SWITCH, 0, SIG, HighPowerMode, 0, write, 1

1222481, TASK_200MS, 0, SIG, HighPowerMode, 0, read, 1

4482566, TASK_WritingActuator, 2, SIG, S16_C1_1, 0, write, 0

5590428, TASK_10MS, 0, SIG, S16_C1_1, 0, read, 0

