Adding on to Photran

Ralph Johnson
johnson@cs.uiuc.edu

PTP User-Developer Workshop
September 19, 2012



Photran

Made to be expandable
Still under development
Thousands of users
Good documentation

Hundreds of people have learned how to add
a refactoring to Photran



3 Secrets to Extending Photran

Read the Photran Developer’s Guide
~ollow the Photran Developer’s Guide

Practice the Photran Developer’s Guide



Facts about Photran

* Written in Java as an Eclipse plugin

* Actually a CDT plugin

— Many features of Photran are “inherited” from
CDT

— Design of Photran depends on that of CDT

* An extension of Jeff Overbey’s “Rephraser Engine”



From CDT

Most of Ul

Debugger

Launcher

Build (based on make)

Error parser (interface from CDT)



Purpose of today

* Learn enough about internal representation to
make a refactoring

— Internal representation of Fortran programs
— How to make a refactoring

* Learn how to connect to new Fortran compiler

— How to make an error parser

* NOT learning Ul



CDT program representation

* Project/Resource
— Eclipse: represents project and all its files

e CDT Model

— Provides a simplified view of program for Ul, the
tree view

e AST
— Detailed description of a file; produced by parser



Photran Program Representation

* AST

— Detailed description of a file; produced by parser

e VPG (Virtual Program Graph)
— Represents entire program

— Pretends to hold all ASTs, actually just stores
summary

— Produces Fortran version of CDT Model
— Knows about project, resources



PhotranVPG

* PhotranVPG.getInstance() — singleton

* Has methods for finding parts of program

— ArraylList<Definition> findAlIModulesNamed(String
name)

— ArrayList<Definition> findSubprograms(String
name, IFile file)

— List<IFile> findFilesThatExportSubprogram(String
subprogramName)



PhotranVPG

e public Definition
getDefinitionFor(PhotranTokenRef tokenRef)

* public Type getTypeFor(PhotranTokenRef
tokenRef)

e public Visibility getVisibilityFor(Definition def,
ScopingNode visibilitylnScope)



PhotranTokenRef

* Represents a token in a file; Editor converts a
selection into a TokenRef.

* VPG maps TokenRef to nodes in AST.



Type

Definition — Type + array length & dimension
Visibility — public/private

ScopingNode — an AST node that represents a
scope. The type hierarchy tells you which
nodes are ScopingNodes; BlockConstruct,

DerivedType, FunctionSubprogram, Interface,
Module, ...



2 Kinds of Refactoring

* FortranEditorRefactoring
— Is given the text selection

— Can change any file

* FortranResourceRefactoring
— |s given a set of files
— Will process all these files and can change any

* Choose appropriate superclass and then
implement key methods.



Refactoring

* Four key methods
— checkiInitialConditions
* Very simple checks even before asking for input

— checkFinalConditions

 Validate user input, perform more expensive checks
— createChange
— getName



User input

* Refactoring classes in org.eclipse.photran.
Internal.core.refactoring

* Ul classes needed by refactorings are in
org.eclipse.photran.internal.ui.refactorings



Register the refactoring

 Add new refactoring as a menu item by
putting a line in plugin.xml in
org.eclipse.photran.ui.vpg



Adding a new Fortran compiler

* Compiler is invoked by make; just change
makefile to use new compiler

* Photran must interpret error messages. Write
a new ErrorParser and add it to a plugin for
that compiler. See
org.eclipse.photran.core.intel for an example.



ErrorParser

* |ErrorParser has one method, processLine()

 Method usually contains a large number of
nested Ifs that look for special cases.

* Errors reported by generateMarker method of
ErrorParserManager, which collects errors.



