
M3DA Protocol Specification
This is a draft document

M3DA protocol specification
Document history
Reference documents
Table of Content

Introduction1.
Definitions1.1.
Notations1.2.

Serialization2.
Object types2.1.
Predefined classes2.2.

Transport objects2.2.1.
2.2.1.1. M3DA::Envelope

Message objects2.2.2.
2.2.2.1. M3DA::Message
2.2.2.2. M3DA::Response

Composite objects2.2.3.
2.2.3.1. M3DA::DeltasVector
2.2.3.2. M3DA::QuasiPeriodicVector

Data model3.
Tree structure3.1.
Path and variables3.2.
Shortcuts3.3.
Commands and Events3.4.

Events3.4.1.
Commands3.4.2.

Transport4.
Envelope4.1.

Nested envelopes4.1.1.
Envelope headers and footers4.1.2.

Sub M3DA transport4.2.
SMS4.2.1.

Binary SMS4.2.1.1.
Text SMS4.2.1.2.
GSM SMS format4.2.1.3.

TCP4.2.2.
UDP4.2.3.

Work-flow elements5.
Package5.1.
Session5.2.
One Way Package5.3.
End of session5.4.

Bysant Custom Object definition6.

Examples7.
Sequence diagrams7.1.

Standard device to server session7.1.1.
Standard device to server to device session7.1.2.
Session on an unreliable with packet loss7.1.3.

Case 1: the request envelope is lost7.1.3.1.
Case 2: the reply envelope is lost7.1.3.2.

Serialization7.2.
Writing a node7.2.1.
Acknowledge a message7.2.2.

M3DA protocol specification

Document history

Date Version Author Comments

Sept 12th 2008 1/A T. CAMINEL First released version

March 14th 2009 2 Experts Group Refactor the document
architecture
Add correlated data
messages

March 24th 2009 2.1 Cuero Bugot
David Francois

Add SMS transport
Fix typos in M3DA::Delt

 asVector

Precise what an M3DA::E
 can hold as data vent

Update serialization
examples

March 31st 2009 2.2 Cuero Bugot Explicit restrictions on
ticketIds

April 17th 2009 2.3 Cuero Bugot Add Binary class in the
Classes Diagram
Split chapter 4.2 into sub
chapters

Sept 18th 2009 2.4 Cuero Bugot Refactor protocol
transport chapter
Added Serialization
grammar in annexes
Add work flows examples
Explicit the notion of
session

Aug 19th 2011 3.0 Cuero Bugot Major refactor of the
document format (wiki)
Removed Timestamped
objects
Add SMS text transport
Removed Events and
commands
Add shortcup map header
field
Changed the serialization
protocol
Add nested envelope
Removed HTTP transport

Reference documents

REF-1 Bysant Serialization
Bysant Serializer

Version 1

REF-5 3GPP TS 23.040
Technical realization of the Short
Message Service (SMS)

V8.3.0 (2008-09)

Table of Content

M3DA protocol specification
Document history
Reference documents
Table of Content

Introduction1.
Definitions1.1.
Notations1.2.

Serialization2.
Object types2.1.
Predefined classes2.2.

Transport objects2.2.1.
2.2.1.1. M3DA::Envelope

Message objects2.2.2.
2.2.2.1. M3DA::Message
2.2.2.2. M3DA::Response

Composite objects2.2.3.
2.2.3.1. M3DA::DeltasVector
2.2.3.2. M3DA::QuasiPeriodicVector

Data model3.
Tree structure3.1.
Path and variables3.2.
Shortcuts3.3.

https://confluence.sierrawireless.com/display/PLT/Bysant+Serializer

Commands and Events3.4.
Events3.4.1.
Commands3.4.2.

Transport4.
Envelope4.1.

Nested envelopes4.1.1.
Envelope headers and footers4.1.2.

Sub M3DA transport4.2.
SMS4.2.1.

Binary SMS4.2.1.1.
Text SMS4.2.1.2.
GSM SMS format4.2.1.3.

TCP4.2.2.
UDP4.2.3.

Work-flow elements5.
Package5.1.
Session5.2.
One Way Package5.3.
End of session5.4.

Bysant Custom Object definition6.
Examples7.

Sequence diagrams7.1.
Standard device to server session7.1.1.
Standard device to server to device session7.1.2.
Session on an unreliable with packet loss7.1.3.

Case 1: the request envelope is lost7.1.3.1.
Case 2: the reply envelope is lost7.1.3.2.

Serialization7.2.
Writing a node7.2.1.
Acknowledge a message7.2.2.

1. Introduction

This document describes the M3DA Protocol stack and exchanged messages.
The document is intended to be read by implementors of the protocol and low level user of the Platform.

The M3DA protocol is a layered stack of protocols and API. At application level there is a set of data structures to
access the services of the platform (). At a lower level there is the session and M3DA transportM3DA::Message

protocol (). At the lowest level there are the transports protocols, such as TCP, SMS, etc.M3DA::Envelope

1.1. Definitions

Device: The Device is managed by one remote entities (the Server). A device may have many
characteristics, and many parameters may be made available for reading, writing, deleting and modifying by a
Device Management Server.
Envelope: The envelope is defined by the protocol object object. It is composed ofM3DA::Envelope

header fields and a payload. The payload is composed of 0, 1 or more messages.
Message: A message is an object holding the basic protocol data elements.M3DA::Message

One way package: A one way package is a package that is only composed of a request. This is only used
over one way transport layers.
Package: A package is defined as a couple of envelope: a request and a reply. Because of the specific
structure of the envelope, one envelope can actually be at the same time a reply of the previous package and
a request of the next package.
Session: A Session is a set of one ore more packages happening successively between too peers.

1.2. Notations

M3DA:: prefix is used to name M3DA custom classes
 prefix is used to name standard Bysant objectsB::

When a pseudo code algorithm is provided:

arrays start at index 0
A.length() returns the number of elements of the array A
A.remove(x) returns and pop the firsts elements of the array x A

2. Serialization

M3DA uses Bysant serialization . Bysant is a binary dynamically-typed serialization protocol.REF-1
Bysant has been designed to be able to self-describe the serialized types, i.e. not requiring external schema or
interface definition. This feature allows flexibility, custom type support. It also eases versioning and extensibility.
Bysant has a notion of , to avoid duplication of type definition. This notion is used to support external objectreference
definition, allowing further optimization of the transmitted streams.

2.1. Object types

Bysant uses an internal object model to represent data. It is able to serialize different types of object, including
primitive types, basic collections (list/map), and instances of custom classes.

This class diagram represents the hierarchy of classes that are used in this protocol. These classes are a shared
model between different implementations that communicate together.
The diagram shows a comprehensive view of what can be sent, however this is not an implementation reference. It's
rather a view to help implementors to understand how objects will be nested. The only classes that are actually
necessary to the application layer are the one in white and yellow (i.e. the final classes)

Implementors must provide at least the final classes (in white/yellow), and can skip generic classes (in green) that
are supposed to be abstract.
The primitive classes (in yellow) are not actual subclasses of , but they have been showed this wayM3DA::Object

to explain that primitive type can be contained in objects as standard types. Of course, implementors should rely on
their language primitive types to handle this.

2.2. Predefined classes

Bysant allows the reference to an already defined class definition.
We use this mechanism to define the classes defined in this document, but the class definition is done out of band.
This mean that we have a subset of pre-defined and numbered classes that are shared on each implementation and
their definition are never to be sent in any stream.

The following sections describes each predefined classes. Each class has a single unique ID that is used during
Bysant serialization: implementations must ensure that this predefined classes are properly processed without any
explicit class definitions in the connection streams. To ensure this, note that the given fields are to be serialized in
the exact given order. See Bysant specification for more details .REF-1

2.2.1. Transport objects

2.2.1.1. M3DA::Envelope

The object is used for the transport of M3DA content. The envelope contains a Header andM3DA::Envelope

Footer that store the transport related information, and a payload that contains the M3DA applicative data.

ID Class Name Fields

0 M3DA::Envelope header: B::Map
payload: B::String
footer: B::Map

The and maps contains the parameters related to the transport. Having a footer allows to actuallyheader footer
stream the data and append data afterwards. This is used for the security extension.

The is a string of serialized M3DA applicative content (and).payload M3DA::Message M3DA::Response

When no messages are to be sent (for instance for keep alive messages), then an empty
string should be serialized.
When using the security extension, nested envelope may be used. In that case the
payload of the first envelope is the second envelope serialized optionally ciphered.

See for more details on the envelope.#Transport

2.2.2. Message objects

2.2.2.1. M3DA::Message

The object is a container object that enables the data transmission between two peersM3DA::Message

ID Class Name Fields

1 M3DA::Message path: B::String (textual path) or
Integer (shortcut)
ticketid: Positive Integer (request
ack if not zero) or (noB::Null

ack, same as zero)
body: B::Map

The field is the root path of all variables contained in this message.path
See chapter for details on paths. The must not be set to B::Null or empty B::String as it#Path and variables path
contains the asset id that will receive this message.

The field is used to require an acknowledgment () for this message. If noticketid M3DA::Response

acknowledgment is required then this field must be set to . The will be repeated in theB::Null ticketid
acknowledgment object.
The sender must ensure that the values do not overlap with a value of a already sent messages but not yetticketid
acknowledged, so that received responses can be uniquely matched with one message.

The field is a B::Map containing all the variables names and values. The fields must comply with thebody body
following constraints:

keys
the key of a map entry must be either a B::String (textual variable name) or an Integer (shortcut)
the key cannot be B::Null or an empty B::String.
same rules as the ones for the path definition above apply .#Path and variables
it is possible to have composed variable names in the key of the map entry: part of the path can be
included in the variable name.
For example, valid keys are: "temperature", "engine.temperature", "input[1]", "engine[1].temperature"

values
the value of a map entry is a B::List of primitive values (, or).B::String B::Number B::Boolean

each list of the map must have the same cardinality
as a special optimization case, when the B::List holds only one element, the list object can be omitted
and replaced by the Value itself
lists of values can be actual Bysant B::List object or more specialized list classes as M3DA::DeltasV

 or ector M3DA::QuasiPeriodicVector

2.2.2.2. M3DA::Response

The object is a container object that enables to acknowledge the processing of a M3DA::Response M3DA::Messa

 sent from a peer.ge

ID Class Name Fields

2 M3DA::Response ticketid: Positive Integer
status: Integer
data: B::String

The field is copied from the that this response object acknowledges.ticketid M3DA::Message

The field is a status code that indicate if the processing associated with the corresponding message wasstatus
successful or not. A value of 0 (zero) means that the corresponding message was processed successfully. A value
different from zero means that an error happened.

It is outside the scope of this specification to define error status codes, or to define when a
message was processed successfully or not. This is to be defined at the application level, when
implementing the final application.

The field is an additional data along with this response. It is used to describe the error when the status is notdata
equal to 0. This field is optional, and should be set to when not used.B::Null

2.2.3. Composite objects

2.2.3.1. M3DA::DeltasVector

The allows improving data compression for data that are similar (data are transmitted asM3DA::DeltasVector

deltas instead of absolute values).

ID Class Name Fields

3 M3DA::DeltasVector factor: B::Number
start: B::Number
deltas: B::List of Integer

This object is a container where numerical values are coded as deltas. A coefficient factor can be applied to
minimize further the deltas values.

Actual values Y are recomposed from the object fields in the following manner:

Y[0] = factor * start
for i = 0, deltas.length() do
 Y[i+1] = Y[i] + factor * deltas[i]
end

Example : the following objects

factor=1, start=200, deltas = { 10, -30, 20 }
factor=10, start=20, deltas = {1, -3, 2 }

would produce the same set of values:

{200, 210, 180, 200}

This encoding use less bandwidth, due to the Bysant property to encode small numbers in a more efficient way than
big ones.

Moreover, this mechanism allows transmitting data with a given precision. For example, to transmit timestamps with
a 1 minute resolution (round the timestamp to a multiple of 60 seconds), the factor should be set to 60.

Posix timestamp list : {1233786292, 1233786418, 1233786720, 1233786904 }
Encoding: factor=60, start=20563105, deltas = { 2, 5, 3 }
Decoding: {1233786300, 1233786420, 1233786720, 1233786900 }

The list only allows integer values in order to save bandwidthdeltas

2.2.3.2. M3DA::QuasiPeriodicVector

The allows improving data compression for data that are quasi periodic (onlyM3DA::QuasiPeriodicVector

shifts from a period are sent).

ID Class Name Fields

4 M3DA::QuasiPeriodicVector period: B::Number
start: B::Number
shifts: B::List of B::Number

This object may be used when a vector of values is quasi periodic, meaning they are periodic plus small deltas (due
to sampling errors for instance).

Actual values Y are recomposed from the object fields in the following manner:

Y[0] = start
local i = 1
while shifts.length() > 1 do
 local n, s = shifts.remove(2)
 for j=i, i+n+1 do
 Y[i] = Y[i-1] + period
 end
 i = i+n+1
 Y[i] = Y[i]+s
end
local n = shifts.remove(1)
for j=i, i+n do
 Y[i] = Y[i-1] + period
end

The field is never empty and contains an odd number of values . The first values are optionalshifts (2k+1) 2k

couples where is the number of repeated periods before the shift is applied; the shifted value is then(n, s) n s

appended to the list. This process is repeated until all the couples are exhausted. The last value is the number of
periods that are repeated to end the list.

Example : the following object

period=20, start=143, shifts = { 3, 1, 2, -2, 3}

would produce the vector:

{143, 163, 183, 203, 224, 244, 264, 282, 302, 322, 342}

3. Data model

3.1. Tree structure

The data model is tree oriented.
The root of the tree is the device, the first level is the application, and other levels are optional sub nodes. A variable
is a leaf in tree.
An application sub tree may be dynamic or statically defined in an application model.
A node in the data model tree has a unique path.

On each device, a specific application is “@sys”. This application is in charge of the Device Management
operations.

3.2. Path and variables

When the path or variable name element is a string it should conform to:

each level of a path should be composed by alphanumeric and " -]" characters: [0-9a-zA-Z

1.
2.
3.

the path level delimiter is the character "."
characters "[" and "]" can be used to access lists in the path
the path level "" (empty string) are removed when processed, meaning:

"" concatenated with any path is ignored
successive "." in a path are ignored
preceding and trailing "." are ignored

All those paths are equivalent: "panel..temperature", ".panel.temperature", "panel.temperature.", the canonical form
being "panel.temperature"
Example of valid paths:

"car.engine[1]"
"car.engine1" (valid but different meaning from above!)
"car.battery_level"
"car"

3.3. Shortcuts

In order to limit bandwidth usage, a shortcut map can be shared between the platform server and the device. The
mechanism of keeping this map synchronized is outside the scope of this specification.
In order to use shortcut mechanism, in objects that allows it, a B::String object can be replaced by an Integer object.

Shortcuts are supported for the following fields:

Envelope header and footer fields.
path field of objectM3DA::Message

key of the body map field of an M3DA::Message

The shortcut map contains different namespaces for each shortcut categories:

Example:

message.keys
{
 0 temperature
 1 voltage
 2 input[1].value
 3 [2]
}

message.path
{
 0 engine
 1 heating.livingroom
 2 @sys.config.monitoring.triggers
}

envelope
{
 0 pid
 1 status
}

In order to be sure the shortcut map is synchronized, the sending peer must add the envelope header field withsmv

the corresponding version of the shortcut map.
If the other peer does not have the definition of the shortcut map for a given version, it should refuse the connection
by replying a status code 451. (code value TBD)

3.4. Commands and Events

This section is non normative

M3DA provides an easy way to abstract Command and Event applicative behaviors.

3.4.1. Events

An event is basically a data sending. The receiving peer is free to handle data writing as an event and trigger
specific work-flow on data reception.

3.4.2. Commands

A command is a notification plus optional additional parameters. In order to emulate the command behavior, a data
writing is to be done on a node path, providing several variables in the message.
For example, the server could send the message containing the path and data:

{"@sys.commands.DoSomething", {param1="somevalue", param2="someothervalue"}}

The device would receive a notification that the node "@sys.commands.DoSomething" was written, along with the
subvalues of param1 and param2

4. Transport

4.1. Envelope

Each exchanges between two peers involve envelopes. An envelope is the object that assumesM3DA::Envelope

the role of M3DA transport layer. The envelope is an atomic transport element. An envelope is composed of
headers, a payload, and footers.

4.1.1. Nested envelopes

Usually the payload of the envelope contains 0, 1 or more messages (); 0, 1 or more responses (M3DA::Message M

). However, specific extensions of M3DA may require that the payload of an envelope contains3DA::Response

another envelope with all its fields.
There can be only one nested level. This is used in the M3DA Security extension so to provide protected headers
and footers. In that case, the second envelope (the one encapsulated) is called the 'protected envelope'.

4.1.2. Envelope headers and footers

This specification defines headers and footers that should be supported when implementing M3DA. Additional
headers and footers may be defined in M3DA extension documents.

Header field name Description

smv Shortcut Map Version. This field is mandatory when
using the shortcut mechanism. It indicates the shortcut
map version used by this package. See chapter TODO
for details on shortcuts

id Sender unique identifier. Used by the other peer to
identify the sender. This field is mandatory when the
device sends packages to the server, and should be
set to the DeviceID.

pid Package ID. This field is mandatory for unreliable
transport. It allows to differentiate consecutive
packages from re-emitted packages. The value ispid

an integer. See for details#UDP

status This field is mandatory in reply packages. It gives the
status of the previous request.

The following status code are supported:

Status code Description

200 OK

400 The request is mal-formed.(usually happens when
some required header fields are missing or mutually
exclusive fields are used together or the envelope
content is malformed)

403 This system is not allowed to communicate,
authentication will not help.

451 The envelope header contains no reference or a
reference to a shortcut map version that does not exist

500 Unexpected server error. The server was able to
process the message (e.g. : database outage)

503 Service temporally unavailable. The request should be
retried later. Can happen when the system
communication quota is exceeded.

Additional status values can be specified in add-on specifications (e.g.).M3DA Security Extension

4.2. Sub M3DA transport

Several transport protocols are supported. The M3DA protocol is adaptive to what underlying transport protocol is

https://confluence.sierrawireless.com/display/PLT/M3DA+Security+Extension

used. For this reason is self sufficient and no extra features of the transport protocol are used.M3DA::Envelope

4.2.1. SMS

SMS can be used to send small amount of data from/to a modem that support SMS messaging

4.2.1.1. Binary SMS

The binary SMS format is usually the more efficient in terms of data bandwidth.
When using the binary SMS transport protocol, the serialized prefixed by the byte string “M3DA”M3DA::Envelope

is directly transmitted in the SMS payload.

SMS payload = "DA3B" + Serialize({{M3DA::Envelope}})

4.2.1.2. Text SMS

Some carriers do not support Binary SMS properly. In that case, text format can be used, but it would be slightly less
efficient as the binary data is first translated using base64 algorithm.
When using the text SMS transport protocol, the serialized is translated to text using base64 andM3DA::Envelope

then prefixed by the byte string “DA3T” and transmitted in the SMS payload.

SMS payload = "DA3T" + Base64(Serialize({{M3DA::Envelope}}))

4.2.1.3. GSM SMS format

Some other constraints are added on the GSM SMS format:

Data coding scheme (TP-DCS) must be equal to 4. (Specifying 8-bits uncompressed data)
Protocol identifier (TP-PID) must equal to 0 (Specifying “Short Message Type 0” SMS)
If the binary string is larger than the maximum SMS payload size (140 bytes), the standardized
“Concatenated SMS” can be used.

The SMS protocol and SMS PDU format is defined in .REF-5

4.2.2. TCP

The TCP transport layer can be used to transport M3DA. The serialized object is directlyM3DA::Envelope

written/read to/from the socket.
Once an M3DA Session is finished, the TCP link can be maintained open in order to save the overhead of reopening
another TCP session for a successive M3DA session.

4.2.3. UDP

The UDP transport layer can be used to transport M3DA. The serialized object must hold intoM3DA::Envelope

one single UDP datagram as no fragmentation mechanism is defined over UDP.
Also UDP is an unreliable transport and so the sender must ensure the other peer receives the request by waiting
for the reply envelope.
This specification defines a timeout of 5 seconds after which the sent datagram is assumed to be lost and a

1.

1.

re-emission should occur. After 5 failed attempt to send a packet the connection should be aborted and the remote
peer considered not reachable.
When using an unreliable transport the envelope header field is mandatory so to uniquely differentiatepid

packages.
The header field must be incremented by 1 for each new request and reply envelope, and wraps around at 32.pid

During a session, received UDP datagram must have incremental (previous plus one), otherwise thepid pid

datagram should be discarded.

One device can have only one active connection with a given peer at a given time. That
constraint makes sure that received UDP datagrams are only pertaining to the same session.

5. Work-flow elements

5.1. Package

A package is composed of a request and a reply envelope. The request and reply are both formed with the same
M3DA protocol object: .M3DA::Envelope

A request envelope is the first envelope of a session or an envelope that have a non empty payload
A reply envelope is an envelope that contains the field.status

During a session, an envelope can serve both as reply (contains the field) and a request (contains somestatus

data) at the same time.
It is important to note that only one package at a time is allowed to happen between two peers. In other words, a
new request cannot be issued until the reply of the previous request is received.

5.2. Session

A session is composed one or more packages.

5.3. One Way Package

There is an exception for the request-reply scheme when using a one way only transport layer (as SMS for
instance). In that case the two peers know that a reply cannot not be sent. The way the two peers know that the
package is one-way is outside the scope of this document. It is important to point out the fact that in one way
communication a peer cannot know if the message was actually received.

5.4. End of session

A session is finished when an reply-only envelope is received. A reply-only envelope contains the field andstatus

no payload.

For a one way package the session correspond exactly to the one way package.

There is also some specific cases where a session should also considered as finished:

When the underlying protocol has a session mechanism that encapsulate the M3DA session (like TCP) then
the session should be considered finished if the underlying session is finished (ex TCP link is broken).

When a peer does not receives a reply for SESSION_TIMEOUT (in seconds) time (not considering the retry
mechanism that may be used for unreliable links) then the session is considered as finished.

6. Bysant Custom Object definition

M3DA uses Bysant Custom object extension to define M3DA specific objects. This section gives the serialized
definition of those objects.

The Bysant class definition is:

classID[Numbers] size[Numbers] (ctxID[1 byte]) x size

where size is the number of fields of the object. (See)REF-1

M3DA::Envelope: classID[0] size[3] ctxID[6-Lists&Maps] ctxID[1-UIS] ctxID[6-Lists&Maps]

M3DA::Message: classID[1] size[3] ctxID[1-UIS] ctxID[1-UIS] ctxID[6-Lists&Maps]

M3DA::Response: classID[2] size[3] ctxID[1-UIS] ctxID[2-Numbers] ctxID[1-UIS]

M3DA::DeltasVector: classID[3] size[3] ctxID[2-Numbers] ctxID[2-Numbers] ctxID[6-Lists&Maps]

M3DA::QuasiPeriodicVector: classID[4] size[3] ctxID[2-Numbers] ctxID[2-Numbers] ctxID[6-Lists&Maps]

7. Examples

This section is informative

7.1. Sequence diagrams

7.1.1. Standard device to server session

In this sequence diagram the device send some data to the server. The server respond with a 200 status empty
message, so this finish the current session.

7.1.2. Standard device to server to device session

In this sequence diagram the session is done in two packages. The second envelope is actually spanned over two
package because it contains both a status code (=>it is a reply) and some data (=>it is a request)

7.1.3. Session on an unreliable with packet loss

In the above sequence diagrams the device re-emit an envelope after a timeout if it has not received the reply
envelope. It actually does not matter if the envelope to the server was lost (case 1) or if the reply from the server
was lost (case 2), the initial envelope is re-sent. The peer must know what envelope it has already received in case
the other peer re-emit it so not to process it twice. This is the purpose of the field.pid

7.1.3.1. Case 1: the request envelope is lost

7.1.3.2. Case 2: the reply envelope is lost

7.2. Serialization

7.2.1. Writing a node

TODO

7.2.2. Acknowledge a message

TODO

	M3DA Protocol Specification

