
Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 1

Comparing M2T & M2M
Complementary Approaches

Hugo Bruneliere, Richard Paige & Goran Olsen

INRIA, York & SINTEF 

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 2

Context of this work

• The present courseware has been elaborated in the context of the
MODELPLEX European IST FP6 project (http://www.modelplex.org/).
• Co-funded by the European Commission, the MODELPLEX project

involves 21 partners from 8 different countries.
• MODELPLEX aims at defining and developing a coherent

infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems within a
variety of industrial domains.
• To achieve the goal of large-scale adoption of MDE, MODELPLEX

promotes the idea of a collaborative development of courseware
dedicated to this domain.
• The MDE courseware provided here with the status of open-source

software is produced under the EPL 1.0 license.

http://www.modelplex.org/

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 3

Outline

• Presentation of model transformation
• Overview
• Other kinds of transformation (not model-based)

• What is M2T?
• Principles
• Existing solutions (MOFScript & Epsilon EGL)

• What is M2M?
• Principles
• Existing solutions (ATL & Epsilon ETL)

• Differences between M2T & M2M

• Combining both approaches in an MDE process
• Application on a concrete use case: UML2 to Java
• Advantages of such a solution

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 4

Presentation of model transformation

Overview

• Model-Driven Engineering (MDE) technique

• Consume/produce models as inputs/outputs
•Each model conforms to a given metamodel

• Two kinds of model transformation:
•Model-to-Text transformation (M2T)
•Model-to-Model transformation (M2M)

• Two different possible implementations:
•Use a model transformation Domain-Specific Language (DSL)
•ATL, MOFScript, Epsilon, etc.

•Use a General Purpose Language (GPL)
•Java, C#, etc.

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 5

Presentation of model transformation

Other kinds of transformations (not model-based)

• XSLT transformation
•XML document-to-XML document transformation
•Each XML document conforms to a given XML schema
!Directly translatable to the MDE paradigm

• Compilation transformation
•Text-to-Binary transformation
•Each source program conforms to a given grammar
•Each target compiled program conforms to a given binary

format
!Also adaptable to the MDE paradigm

•Model transformation is a generic abstraction of all
these techniques

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 6

What is M2T?

Principles

• To be completed (York & SINTEF)

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 7

What is M2T?

Existing solutions: MOFScript

• To be completed (SINTEF)

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 8

What is M2T?

Existing solutions: Epsilon EGL

• To be completed (York)

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 9

What is M2M?

Principles

Metametamodel

Metamodel

Terminal Model

M3

M2

M1

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 10

What is M2M?

Principles

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 11

What is M2M?

Existing solutions: Eclipse-M2M ATL

• Website ! http://www.eclipse.org/m2m/atl/

http://www.eclipse.org/m2m/atl/

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 12

What is M2M?

Existing solutions: Eclipse-M2M ATL

• Available resources (1/2)

•Use cases ! 24 complete transformation scenarios
covering many different domains of application

•Basic examples ! very first transformation examples which
are interesting when starting with ATL (for beginners)

•ATL Transformations ! ATL Transformation Zoo which
gathers more than a hundred of various and varied
transformations implemented using ATL

•Download ! different binary builds of ATL available and
also additional information for using the ATL update site

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 13

What is M2M?

Existing solutions: Eclipse-M2M ATL

• Available resources (2/2)

•Documentation ! various kinds of ATL documents including
a reference manual, a user manual, installation instructions,
etc

•Publications ! non-exhaustive list of papers presenting
different works involving or using (directly or indirectly) ATL

•Wiki ! an open section dedicated to ATL on the Eclipse
Wiki which allows the community to consult or/and add
information about ATL

•Newsgroup ! a link to the Eclipse newsgroup dedicated to
the M2M project components (posts concerning ATL are
prefixed with the [ATL] tag)

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 14

What is M2M?

Existing solutions: Eclipse-M2M ATL

• How to get the plugins:

•Download the latest binary builds (frequently updated): http://
www.eclipse.org/modeling/m2m/downloads/?project=atl

•Use the M2M update site (M2M ATL SDK): http://
www.eclipse.org/modeling/m2m/updates/

• Install ATL sources from CVS (stable HEAD): http://
wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/

• Install ATL sources from CVS (development branch): http://
wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS

http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/updates/
http://www.eclipse.org/modeling/m2m/updates/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 15

What is M2M?

Existing solutions: Epsilon ETL

• To be completed (York)

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 16

Differences between M2T & M2M

• M2T transformation bridges the MDE technical space
with the Grammarware technical space
• Consumes/produces models to/from text files
• Requires both reference models (i.e., metamodels or

metametamodels) and text formats (e.g., grammars)
• Handles both model elements and text
! Heterogeneity

• M2M transformation concerns only the MDE technical
space
• Consumes/produces only models
• Requires only reference models (i.e., metamodels or

metametamodels)
• Handles only model elements
! Homogeneity

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 17

Combining both approaches in an MDE process

Application on a concrete use case: UML2 to Java

• An M2T solution

• A single transformation
 performing at the same time:

• Refactoring
 (e.g. delete of multiple
 inheritance)

• Mapping (UML2 concepts to
 Java concepts)

• Extraction to a concrete
 syntax (conforming to the
 Java grammar)

MDE Text

UML2

MOF EBNF
grammar

Java
grammar

C2 C2

Java
program

C2

UML
class

diagram

C2

M3

M2

M1 M2T Transformation

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 18

Combining both approaches in an MDE process

Application on a concrete use case: UML2 to Java

• Same case using an M2M+M2T solution
MDE Text

UML2

MOF EBNF
grammar

Java
grammar

C2
C2

Java
program

C2

UML
class

diagram

C2

M3

M2

M1 M2T UML
class

diagram

Java
program

Java

C2

C2

C2

refactoring mapping

M2MM2M

extraction

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 19

Combining both approaches in an MDE process

Application on a concrete use case: UML2 to Java

• Same case using an M2M+M2T solution + new refactoring
MDE Text

UML2

MOF EBNF
grammar

Java
grammar

C2
C2

Java
program

C2

UML
class

diagram

C2

M3

M2

M1 M2T UML
class

diagram

Java
program

Java

C2

C2

C2

refactoring mapping

M2MM2M

extraction

UML
class

diagram

C2

refactoring

M2M

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 20

Combining both approaches in an MDE process

Application on a concrete use case: UML2 to Java

• Same case using an M2M+M2T solution + new mapping
MDE Text

UML2

MOF EBNF
grammar

Java
grammar

C2
C2

Java
program

C2

UML
class

diagram

C2

M3

M2

M1 M2T UML
class

diagram

Java
program

Java

C2

C2

C2

refactoring mapping

M2MM2M

extraction

C#
grammar

C2

C#
program

C2

M2T

extraction

C#
program

C#

C2

M2M
mapping

C2

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 21

Combining both approaches in an MDE process

Application on a concrete use case: UML2 to Java

• Same case using an M2M+M2T solution + new extraction
MDE Text

UML2

MOF EBNF
grammar

Java 1.6
grammar

C2
C2

Java
program

C2

UML
class

diagram

C2

M3

M2

M1
M2T UML

class
diagram

Java
program

Java

C2

C2

C2

refactoring mapping

M2MM2M

extraction

Java 1.4
grammar

C2

Java
program

C2

M2T
extraction

Comparing M2T & M2M Complementary Approaches

© 2008 INRIA, University of York & SINTEF 22

Combining both approaches in an MDE process

Advantages of such a generic M2M+M2T solution

• Modularity
• Clearly separate the concerns (refactoring, mapping, extraction to

a given syntax, etc)
• Extensibility
• Easily add new features (additional refactoring, different mapping,

other extraction to a textual or graphical syntax, etc)
• Reusability
•Apply the same feature in different contexts (i.e., the same

refactoring for targeting different languages)
• Homogeneity
•Handle mostly models (extraction is just the final step)

• Abstraction
• Focus is set only on the concepts (abstract syntax) and not on their

various possible representations (concrete syntaxes)

