
UML and OO Basics

 Eclipse ECESIS Project!1

UML and Object-Orientation

The Fundamentals

Department of Computer Science,
The University of York, Heslington, York YO10 5DD, England

http://www.cs.york.ac.uk/~paige

UML and OO Basics

 Eclipse ECESIS Project!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

UML and OO Basics

 Eclipse ECESIS Project!3

The Unified Modelling Language (UML)

• What is the UML?
• It is a visual language for describing systems.

• It is a successor to the wealth of OO analysis and
design methods of the 80s and 90s.
• It unifies methods of Booch, Rumbaugh (OMT), and Jacobson.

• It is an OMG standard
• Widespread use of UML 1.x.
• Propagating to UML 2.0 (slowly).

• It is a modelling language, and not a method (==
language + process).

UML and OO Basics

 Eclipse ECESIS Project!4

Method vs. Language

• The UML is, in no uncertain terms, a modelling
language.

• OMT, Objectory, Fusion, etc., are methods.

• UML consists of two main parts:
• the graphical notation, used to draw models;
• a metamodel, which provides rules clarifying which models are

valid and which are invalid

• UML does not specify a development or management
process
• ... though see the Rational Unified Process.

UML and OO Basics

 Eclipse ECESIS Project!5

Aside: What Does a Metamodel Look Like?

• A metamodel captures the well-formedness
constraints on diagrams (more on this later).

• e.g., a Feature is either Structural or Behavioural

• Example for UML:

Feature

Structural Feature Behavioural Feature

Parameter

0..1
*

UML and OO Basics

 Eclipse ECESIS Project!6

What is UML Used For? (…and why bother!)

• UML is used to model characteristics of systems:
• static structural characteristics, e.g., classes, interfaces,

relationships, architectures (class diagrams)
• dynamic characteristics, e.g., object creation, messages,

distribution (interaction diagrams)
• behavioural aspects, e.g., reactions to messages, state

changes (statecharts)

• It is typically (though not always) used during
analysis and design, before code is created.

• Newer methods apply UML in concert with code, eg.,
agile modelling, round-trip engineering.

UML and OO Basics

 Eclipse ECESIS Project!7

UML – Some Criticisms and Responses

• You don’t write code immediately.
• “What are these pictures? You can’t execute that? You’re

wasting time and money! Write code.”
• A short amount of time spent on modelling may save a great

deal of time coding.
• See Extreme Programming/Agile Modelling.

• UML is very complex (200+ page syntax guide).
• Very true.
• We’ll focus on a selection of very useful diagrams.

• You can easily produce inconsistent models using
UML.
• ie., multiple views of the same system.

UML and OO Basics

 Eclipse ECESIS Project!8

UML Diagrams

• Class diagrams: the essentials and the advanced
concepts.

• Interaction diagrams: for specifying object interactions
and run-time behaviour via message passing
(communication diagrams in UML 2.0)

• State charts: for specifying object behaviour and state
changes (reactions to messages).

• Use case diagrams: for capturing scenarios of system
use.

• Physical diagrams: for mapping software elements to
physical components, e.g., hardware devices.

• Lots more: extension mechanisms, activity diagrams, …

UML and OO Basics

 Eclipse ECESIS Project!9

The Critical OO Concept

• The most important concept in OO is the class.

• class = module + type
• Module because it has a data part and an operation part.
• Type because you can declare instances.
• Note: this is not the only definition of class that is out there!

• Classes provide features that are declared in its
interface.

• All of OO analysis, design, and programming revolves
around classes, which suggests the question

How do we find the classes?

UML and OO Basics

 Eclipse ECESIS Project!10

Stack in UML

• Three sections in the diagram of a class:
• class name, attributes, operations
• CASE tools differ in the syntax used for arguments.
• variants on this structure (see later)

• Roughly corresponds to entities in E-R models, but these include
operations as well as data/state.

+full() : boolean
+empty() : boolean
+top() : Object
+push(in x : Object)
+pop()

-contents : Object
Stack

UML and OO Basics

 Eclipse ECESIS Project!11

Another Example

+update()
+move()
+animate()
+collide()

+age : double
+health : int
-score : int
-owner_bio
-position
-velocity
-tangent
-force
-angriness
-psprite

Critter

➢ Attributes can be as specific as you
like (e.g., integer type).

➢ Optional specification of arguments
and result type for operations.

➢ These must be filled in when you
generate code.

➢ Some tools restrict the allowed
types (e.g., Visio), but pure UML has
no restrictions.

UML and OO Basics

 Eclipse ECESIS Project!12

Class Features

• A class can have two general kinds of features:
• fields or attributes used to hold data associated with objects,

e.g., contents:Object;
• operations, used to implement behaviour and computations,

e.g., pop(), top()

• Features are all accessed using “dot” notation.
• o.f(...);
• Every feature access has a target and a feature.

• Two kinds of operations: functions and procedures.

UML and OO Basics

 Eclipse ECESIS Project!13

Operations and Methods

• An operation in UML specifies the services that a
class can provide to clients.
• It is implemented using a method.

• Full UML syntax for an operation:
 visibility name (param_list):type {constraint}

• visibility is + (public), - (private), or # (protected)

• The constraint may include pre/post-conditions.

• Think of an operation as an interface that is
implemented by one or more methods.
• Thus, UML classes typically do not include overloaded methods.

UML and OO Basics

 Eclipse ECESIS Project!14

Functions and Procedures

• Functions are operations that calculate and return a
value.
• They do not change the state of an object, i.e., make

persistent, visible changes to values stored in fields.

• Procedures are operations that change the state of
an object.
• They do not return any values.

• Separating functions from procedures is useful in
simplifying systems, for verification, and testing.

UML and OO Basics

 Eclipse ECESIS Project!15

Constructors

• A class should contain special operations called
constructors.
• Invoked when an object is allocated and attached to a variable.

• Constructors (in Java) have the same name as the class.
There may be several of them (overloaded).

 class Person {
 public Person() { name=NULL; age=0; }
 public Person(int a){ name=NULL; age=a; }
 public Person(String n, int a){ ... }
 }

• Constructors are invoked automatically on allocation
• UML <<constructor>> stereotype.

UML and OO Basics

 Eclipse ECESIS Project!16

Visibility

• Each feature of a class may be visible or invisible to
other classes - clients.

• It is recommended, but not required, to not allow
clients to write to/change fields directly.
• Why?

• Each feature in a class can be tagged with visibility
permissions (Java/UML):
• private (-): the feature is inaccessible to clients (and

children).
• public (+): the feature is completely accessible to clients
• protected (#): the feature is inaccessible to clients (but

accessible to children).
• UML allows you to define language-specific visibility tags.

UML and OO Basics

 Eclipse ECESIS Project!17

Class Diagrams - Essentials

• A class diagram describes the classes in a system
and the static relationships between them.

• Two principle types of static relationships:
• associations (e.g., a film may be associated with a number of

actors).
• generalizations (e.g., a tractor is a generalization of a vehicle).

• Class diagrams also depict attributes and operations
of a class, and constraints on connections.

UML and OO Basics

 Eclipse ECESIS Project!18

Class Diagrams - Three Perspectives of Use

• Class diagrams can be used in three different ways:
1. Conceptual modelling: drawn to represent concepts in the

problem domain (e.g., cars, street lights, people).
2. Specification modelling: drawn to represent the interfaces,

but not implementations, of software.
3. Implementation modelling: drawn to represent code.

• Conceptual modelling is often done during analysis
and preliminary design.

• Divisions between perspectives are ‘fuzzy’ and it
boils down to who is your intended audience, and
what message do you want to get across.

UML and OO Basics

 Eclipse ECESIS Project!19

Concepts and Conceptual Modelling

• Concept: A real world entity of interest.
• Structure: relationships between concepts.
• Conceptual Modelling: describing (e.g.,

using UML) concepts and structures of the
real world.

• Class diagrams are commonly used for conceptual
modelling.

• They are a way to model the problem domain and
to capture business rules.
• They do not depict the structure of software!!!

UML and OO Basics

 Eclipse ECESIS Project!20

Example: Conceptual Model/Class Diagram

Database

Stock Market Asset

Portfolio

0..*

1

1

0..*

contains

contains

1

0..*

1

0..*

Investor

1 11 1

accesses

1

1

1

1

accesses

0..*1 0..*1

has

Broker

1

1

1

1

trades with

UML and OO Basics

 Eclipse ECESIS Project!21

Concepts and Models

• Concepts can be identified using noun and noun
phrases in the system requirements
• ... at least as a first-pass approximation ...

• The conceptual model is used as the basis for
producing a specification model.
• Classes appearing in the conceptual model may occur in the

specification model.
• They may also be represented using a set of classes.
• Or they may vanish altogether!

UML and OO Basics

 Eclipse ECESIS Project!22

Finding the Concepts/Classes

• All OO methods hinge on this!
• Much more critical than discovering actors or scenarios.
• It is the process of finding concepts that really drives OO

development - there is nothing OO about use cases!

• We are not finding objects: there are too many of
those to worry about - rather, find the recurring
data abstractions.

THERE ARE NO RULES!

• ... but we do have good ideas, precedents, and some
known pitfalls!
• ... and we’ll look at what others have done.

UML and OO Basics

 Eclipse ECESIS Project!23

Noun/Verb Phrase Analysis

• Many books suggest the following superficial approach:
 “Take your requirements document and underline all the verbs

and all the nouns. Your nouns will correspond to classes, your
verbs to methods of classes.”

• Example: “The elevator will close its door before it moves to
another floor.”

• Suggests classes Elevator, Door, Floor, and methods move,
close.

• This is too simple-minded:
• suffers from the vagaries of natural-language description.
• finds the obvious classes and misses the interesting ones.
• often finds the totally useless classes

UML and OO Basics

 Eclipse ECESIS Project!24

Useless Classes

• Noun/verb approaches usually find lots of useless
classes.

• Does Door deserve to be a class?
• Doors can be opened and closed (anything else?)
• So include a function door_open and two procedures

close_door and open_door in Elevator.

• The relevant question to ask is:
 Is Door a separate data abstraction with its own

clearly identified operations, or are all operations
on doors already covered by operations belonging

to other classes?

UML and OO Basics

 Eclipse ECESIS Project!25

More Useless Classes

• Example: what about class Floor?
• Are properties of floors already covered, e.g., by Elevator?

• Suppose the only interesting property of floors is
their floor numbers; a separate class may not be
needed.

• The question is the proposed class relevant to the
system? is the critical one to ask.
• Answer this based on what you want to do with the class.

UML and OO Basics

 Eclipse ECESIS Project!26

Missing Classes

• Noun/verb approaches usually miss important classes,
typically because of how requirements are phrased.

• Example: “A database record must be created each
time the elevator moves from one floor to another.”

• Suggests Database Record as a class.
• But it misses the concept of a Move! We clearly need such a

class.

 class Move {
 public Floor initial, final; // could be int
 public void record(Database d){ ... };
 ...
 }

UML and OO Basics

 Eclipse ECESIS Project!27

Missing Classes (redux)

• Now suppose the requirement instead read: “A
database record must be created for every move
from one floor to another.”
• Move is now a noun, and the noun/verb method would have

found it.

• So treat this method with caution - it is reasonable
to use it as a first-pass attempt, but be aware that
it
• misses classes that do not appear in requirements
• misses classes that don’t correspond to real-world concepts

(these are the really interesting ones!)
• finds classes that are redundant, useless, or serve to confuse.

UML and OO Basics

 Eclipse ECESIS Project!28

Interesting Classes

•Will have (several) attributes

•Will have (several) operations/methods
•Will likely have at least one state-change method.

•Will represent a recurring concept, or a recurring
interface in the system you are building.

•Will have a clearly associated data abstraction.

• …

UML and OO Basics

 Eclipse ECESIS Project!29

Class Relationships

• Individual classes are boring.

• Connecting them is what generates interesting
emergent behaviour.

• Connecting them is also what generates complicated
problems and leads to errors!

• So we want to be careful and systematic when
deciding how to connect classes.

• In general there are only two basic ways to connect
classes:
• by client relationships (several specialisations in UML)
• by inheritance relationships (several specialisations)

UML and OO Basics

 Eclipse ECESIS Project!30

Associations (Client-Supplier)

• Associations represent
relationships between
instances of classes (a
client and a supplier).

• Each association has two
association ends.

+dispatch()
+close()

+dateReceived
+isPrepaid
+number : String
+price

Order

+credit_rating() : String

+name
+address

Customer

+quantity : int
+price
+is_satisfied : boolean

Order Line

* 1

1

+line_items*

➢An association end can be named with a
role

➢If there is no role, you name an end after the target class.

➢Association ends also can have multiplicities (e.g., 1, *, 0..1)

UML and OO Basics

 Eclipse ECESIS Project!31

Multiplicity

• Multiplicities are constraints that indicate the number
of instances that participate in the relationship.

• Default multiplicity on a role is 0..*.

• Other useful multiplicities:
• 1: exactly one instance
• *: same as 0..* (arbitrary)
• 1..*: at least one
• 0..1: optional participation

• You can, in general, specify any number, contiguous
sequence n..m, or set of numbers on a role.

• Note: multiplicities constrain instances!

UML and OO Basics

 Eclipse ECESIS Project!32

Associations Imply Responsibilities

• An association implies some responsibility for updating
and maintaining the relationship.

• e.g., there should be a way of relating the Order to
the Customer, so that information could be updated.

• This is not shown on the diagram: it can thus be
implemented in several ways, e.g., via an add_order
method.

• Responsibilities do not imply data structure in a
conceptual model or a specification model!

• If you want to indicate which participant is responsible
for maintaining the relationship, add navigability.

UML and OO Basics

 Eclipse ECESIS Project!33

Navigability and Associations

• A navigable association indicates which participant is
responsible for the relationship.

Game Room

➢Game is responsible for the relationship.

➢ In an implementation diagram, this may indicate that a Game
object refers to (“points to”, or “has-a”) a Room object.

➢ Note the default “undirected” association really means
bidirectional!

➢Directed associations are typically read as “has-a”
relationships.

UML and OO Basics

 Eclipse ECESIS Project!34

Attributes vs. Associations

• An attribute of a class represents state – information
that must be recorded for each instance.

• e.g., name and address for Customer indicate that
customers can tell clients their names and addresses

• But the association from Customer to Order indicates
that customers can tell clients about their orders.

• So what’s the difference between attributes and
associations?
• At the implementation level, usually nothing.

• Think of attributes as “small, simple objects” that don’t
have their own identity.

UML and OO Basics

 Eclipse ECESIS Project!35

Generalization

• Personal and Corporate customers have similarities and
differences.
• Place similarities in a Customer class, with Personal Customer and

Corporate Customer as generalizations.

Customer

Corporate Customer

Class2Class2Class2

Personal Customer

➢Everything we say about Customers can be said about its
generalizations, too.

➢At the specification level, the subtype’s interfaces must conform to
that of the supertype.

➢Substitutability.

UML and OO Basics

 Eclipse ECESIS Project!36

Generalization vs. Inheritance

• Generalization is not the same thing as inheritance
(extension in Java).
• At the implementation level, we may want to implement it using

inheritance (but we don’t have to – see delegation later).

• Advice: always ensure that conceptual generalization
applies.
• This is the “is-a” relationship.

• Makes it easier to implement later on.

UML and OO Basics

 Eclipse ECESIS Project!37

Inheritance Modelling Rule

• Given classes A and B.

• If you can argue that B is also an A, then make B
inherit from A.

• Note: this is a general rule-of-thumb, but there will
be cases where it does not apply.
• If you can argue that B is-a A, it’s easy to change your

argument so that B has-a A.

UML and OO Basics

 Eclipse ECESIS Project!38

Different Types of Inheritance

UML and OO Basics

 Eclipse ECESIS Project!39

Different Types of Inheritance

• Subtype: modelling some subset relation.
• Restriction: instances of the child are instances of the parent

that satisfy a specific constraint (e.g., RECTANGLE inherits
SQUARE)

• Extension: adding new features.
• Variation: child redefines features of parent.
• Uneffecting: child abstracts out features of parent from at

least one client view.
• Reification: partial or complete choice for data structures (e.g.,

parent is TABLE, reifying child classes are HASH_TABLE).
• Structure: parent is a structural property (COMPARABLE),

child represents objects with property.

UML and OO Basics

 Eclipse ECESIS Project!40

Problems with “is-a”

• It is important to be careful with “is-a” relationships,
since confusion can arise with instantiation.

• Example:
1.Donna is a Siberian Husky. 2.A Siberian Husky is a Dog. 3.A Dog is an Animal. 4.A Siberian Husky is a Breed. 5.A Dog is a Species.
• Combine sentences 1, 2 and 3.

• Combine 1, 4; combine 2, 5. What’s going on?

UML and OO Basics

 Eclipse ECESIS Project!41

Instantiation and Generalization

• The problem is that some of the phrases 1-5 are
instantiation phrases, some are generalizations.
• Donna is an instance of Siberian Husky.
• Siberian Husky is a generalization of Dog.

• Generalization is transitive; instantiation is not.

• Be careful when using “is-a” - make sure you really
have a generalization relationship and not an
instantiation.

UML and OO Basics

 Eclipse ECESIS Project!42

How Not to Use Inheritance

• Suppose that we have a class Car and a class Person.
• Put them together to define a new class Car_Owner that

combines the attributes of both.

Car Person

Car_Owner

➢ Every Car_Owner is both a Car and a Person.

➢ Correct relationship is association between Car_Owner and
Car.

UML and OO Basics

 Eclipse ECESIS Project!43

Association vs. Generalization

• Basic rule is simple: directed association represents
“has-a”, generalization represents “is-a”.
• So why is it sometimes difficult to decide which to use?

• Consider the following statements:
1. Every software engineer is an engineer
2. In every software engineer there is an engineer
3. Every software engineer has an engineer component.

• When the “is-a” view is legitimate, the “has-a” view
can be taken as well.
• The reverse is not normally true.

UML and OO Basics

 Eclipse ECESIS Project!44

Rule of Change

• Associations permit change, while generalizations do not.
• If B inherits from A then every B object is an A object and this

cannot be changed.
• If a B object has a component of class A, then it is possible to

change that component (up to type rules).

• e.g., Person fields can reference objects of type Person,
or of any compatible subtype.

Rule of Change
Do not use generalization for a perceived is-a relationship if

the corresponding object components may have to be
changed at run-time.

UML and OO Basics

 Eclipse ECESIS Project!45

Polymorphism Rule

• Very simple: if we want to use polymorphism and
dynamic binding, then we use generalization.

Polymorphism Rule
Generalization is appropriate for representing is-a
relationships if data structure components of a more
general type may need to be attached to references

of a more specialized type.

UML and OO Basics

 Eclipse ECESIS Project!46

Subtyping and Substitution

class Employee extends Person {
 public String job;
 public int salary, employee_id;
 // assume display() inherited from Person
}

public static void main(...){
 Person p=new Person(“Homer”,38);
 Employee e=new Employee(“Homer”,38,36000);
 ...
 p = e; // is this legal?
 p.display(); // is this legal?
}

➢Generalization becomes particularly useful when
used with substitution, method overriding, and
polymorphism.

UML and OO Basics

 Eclipse ECESIS Project!47

Method Overriding

• Consider a class Person with method display()

• The display mechanisms for Persons are likely
inappropriate for Employees (since the latter will have
more or different attributes).

• We want to override the version of display()
inherited from Person and replace it with a new version.

 class Employee extends Person {
 public void display(){
 super.display();
 System.out.println(“Job:”+job_title+”\n”);
 }

UML and OO Basics

 Eclipse ECESIS Project!48

Method Overriding Again

• When overriding, in the child class merely provide a
new implementation of the method.

• If the signature matches that of an inherited
method, the new version is used whenever it is
called.

• All methods can by default be overridden in Java
• No special syntax for overridden operations in UML.
• Some developers omit the operation in the child class if it is

overridden; this can lead to confusion.
• {leaf} constraint next to the name of an operation prevents

overriding in subclasses.

UML and OO Basics

 Eclipse ECESIS Project!49

Constraints on Overriding

• You do not have complete freedom!

• Rules have to be obeyed in order to maintain
substitutability and static typing in a language.

• Typical rules on overriding:
• attributes and methods can be overridden by default
• the overridden method must type conform to an inherited

method.
• the overridden method must correctness conform to the original

(see this when we get to contracts).

• Type conformance: language dependent; in Java the “exact
match rule” is applied.
• Sometimes called no-variance.
• In UML, type conformance is a point of semantic variation.

UML and OO Basics

 Eclipse ECESIS Project!50

Aside: Contra- and Covariance

• Contravariance: replace a type with a more general
type.

• Covariance: replace a type with a more specific
type.

• Also “no-variance” which is Java’s “solution”

Contravariance Covariance
X bar(Y y); // parent A foo(B b);
Par_X bar(Par_Y y); Child_A foo(Child_B b);

Par_X/Y are supertypes Child_A/B are subtypes

UML and OO Basics

 Eclipse ECESIS Project!51

Contra- vs. Covariance

• In practice, contravariance hasn’t been
demonstrated to be at all useful.
• It is relatively easy to implement.

• No-variance is trivial to implement, but oftentimes is
too restrictive, and in Java leads to lots of casting
to Object.

• Covariance is probably the most useful, but it can
require system-level validity checks - very expensive!
• Recent proposals/work from ETH Zurich attempt to eliminate

this and make the mechanism feasible.
• Prototype implementation in the Eiffel language, work on

porting it to the .NET framework.

UML and OO Basics

 Eclipse ECESIS Project!52

Dynamic Dispatch

➢ Very useful! Invoke methods applicable to the
dynamic type of an object.

➢ Dynamic type is the type of the object attached
to variable.

➢During execution, a variable can be used to refer to
objects of its declared (static) type or of any
compatible type, e.g., children and descendents.

UML and OO Basics

 Eclipse ECESIS Project!53

Figure Hierarchy

• Typical figure taxonomy excerpt.
• Open figures: segment, polyline.
• Other closed figures: triangle, circle, square, ...

+extent()
+barycenter()
+display()
+rotate(in d : double)

Figure

Open_Figure

+rotate(in d : double)

Closed_Figure

+rotate(in d : double)

Polygon
+rotate(in d : double)

Ellipse

UML and OO Basics

 Eclipse ECESIS Project!54

Example - Figure Hierarchy

• Consider the hierarchy of figures (Figure, Polygon,
Square, etc.) and suppose that we have an array of
figures that represent shapes displayed on-screen.
• All figures are to be rotated by a certain angle around a fixed

axis
• General, maintainable solution required that won’t break should

we add new figure types.

 Figure[] f; // array of Figures
 public void rotate_all(double d){
 int i=0;
 while(i<f.length){
 f[i].rotate(d); // dynamic
 i++;
 }
 }

UML and OO Basics

 Eclipse ECESIS Project!55

Modelling Dynamic Characteristics

• So far we have considered only how to model static
(compile-time) system aspects.

• UML provides facilities for modelling behaviour.

• Behaviour in UML is modelled, in general, by
considering:
• events
• messages
• reactions to events

• Some definitions.

UML and OO Basics

 Eclipse ECESIS Project!56

Objects

• An OO program declares a number of variables
(e.g., attributes, locals, parameters)
• Each variable can refer (be attached) to an object.

• An object is a chunk of memory that may be
attached to a variable which has a class for its
type.

• Using an object requires two steps: declaration
of a variable, and allocation.

UML and OO Basics

 Eclipse ECESIS Project!57

Objects in UML

• Each object optionally has a name, e.g., Homer
• Multiple instances of a class represented as on the

right.
• Useful for containers and in representing collaborations of

objects.

• Note: this represents declaration+allocation, but not
allocation by itself! How do we do that?

Homer : Person :Stack

UML and OO Basics

 Eclipse ECESIS Project!58

System Events and Operations

• Systems are used by actors (e.g., users, other
systems)

• Systems are built to respond to events, external
stimuli generated by actors.
• When delineating the system borderline, it is often useful to

determine which events are of interest to the system.

• Operations are executed in response to a system
event.
• The system has control over how it responds to events.
• Operation execution in UML is usually represented via messages

• UML provides diagramming notations for depicting
events and responses: interaction diagrams.

UML and OO Basics

 Eclipse ECESIS Project!59

Interaction Diagrams

• Interaction diagrams describe how groups of objects
collaborate in some behaviour.

• Typically, an interaction diagram captures the
behaviour of a single scenario of use.
• It shows a number of objects and the messages that are passed

among these objects within the scenario.

• Two main types of interaction diagrams: sequence
diagrams and collaboration diagrams.

UML and OO Basics

 Eclipse ECESIS Project!60

Sequence Diagrams

an Order Entry Window an Order an Order Line a Stock Item

prepare()

* prepare()

hasStock := check()

[hasStock] remove()

needsReorder:=needsToReorder()

a Delivery Item
[hasStock] new()

UML and OO Basics

 Eclipse ECESIS Project!61

Sequence Diagrams - Notation

• Objects are shown as boxes at the top of dashed
vertical lifelines (actors can also be shown).

• Messages between objects are arrows; self-calls are
permitted.
• Conditions (guards) and iteration markers.

• To show when an object is active, an activation box
is drawn; the sender is blocked.

• Return from call can be shown as well, but it usually
clutters the diagram/confuses things.

UML and OO Basics

 Eclipse ECESIS Project!62

Sequence Diagrams -  
External View of a System

 : Investor

 : As set
TradingSystem

 : BrokerThe investor selects to open an
existing portfolio.

The investor selects the portfolio
he wishes to open.

The investor selects the buy
asset operation.

The investor enters the asset ID,
name and quantity he wishes to
purchase and the broker that will
perform this transaction.

Before this transaction is
Initiated the investor is prompted
for conformation.

The system instructs the
selected broker to buy the
requested asset.

se lectPortfolio(portfolioID)

selectOperation(operation)

enterAsset(assetID, name, quantity, brokerID)

enterConformation
buyAsset(ass etID, quanti ty)

selectOperation(operation)

UML and OO Basics

 Eclipse ECESIS Project!63

Sequence Diagram Advice

• Typically they are constructed after system
services and scenarios of use have been determined.
• They are good at showing collaborations among objects, not a

precise definition of the behaviour.
• Statecharts are better suited to the behaviour of a single

object.

• Build sequence diagrams by identifying events.
• Is the event generated by an actor or by the system itself?

• Focus on capturing the intent rather than the
physical effect (i.e., don’t use them to flowchart!)

UML and OO Basics

 Eclipse ECESIS Project!64

Collaboration Diagrams

• Semantically equivalent to sequence diagrams.
• Objects are shown as icons, and can be placed anywhere on

the page/screen.
• Sequence of message firings is shown by numbering the

messages.

• Easier to depict object links and layout with
collaboration diagrams; they’re also more compact.

• Easier to see sequence with sequence diagrams.

UML and OO Basics

 Eclipse ECESIS Project!65

Example - Collaboration Diagram

Macallan line : Order
Line

Macallan stock : Stock
Item

: Reorder Item

1: hasStock := check()
2: [hasStock] remove()

3:
 [n

ee
ds

R
eo

rd
er

] n
ew

()

UML and OO Basics

 Eclipse ECESIS Project!66

Collaboration Diagram Notes

• Several numbering schemes for sequences are
permitted.
•Whole sequence numbers (as in example) is the simplest.
• Decimal number sequence (e.g., 1.1, 1.2, 1.2.1, 1.2.2) can be used

to indicate which operation calls another operation.

• Can show control information (guards, assignments) as
in sequence diagrams.

UML and OO Basics

 Eclipse ECESIS Project!67

Collaboration Diagram  
Initial Model without Messages

AssetTrading
System

Broker

Investor

PortfolioDatabase

StockMarket

A:Portfolio

Assets

GUI

UML and OO Basics

 Eclipse ECESIS Project!68

Object Diagrams

• A collaboration diagram without messages is also
known as an object diagram.
• The relationships between objects are called links.

• An object diagram must be a valid instantiation of a
static class diagram.
• Objects must have classes.
• Links between objects must be instances of associations

between classes.

• Use this as a quick consistency check.

UML and OO Basics

 Eclipse ECESIS Project!69

Collaboration Diagrams 
More Complex Examples

:Inv estor

:AssetTrading
Sy stem

openPortf olio :
Portf olio

 : Asset

 : Portf olio

5: noOf Assets := getNoOf Assets : natural

7: [i=1]assetID := getFirstAssetID
10: [i=1]assetName := getFirstAssetName

12: [i/=1]assetID := getNextAssetID

13: [i/=1]assetName := getNextAssetName

3: openPortf olio := f indPortf ilo(portf olioID)

2: selectedPortf olio(portf olioID)
4: noOf Assets := getNoOf AssetsInOpenPortf olio : natural

6: *:[i := 1..noOf Assets]assetID(i) := getOpenPortf olioAssetID(i) : assetID_ty pe
9: *:[i := 1..noOf Assets]assetName(i) := getOpenPortf olioAssetName(i) : string

1: selectPortf olio(portf olioID)

8: ass etID := getID
11: ass etN ame := getN ame

UML and OO Basics

 Eclipse ECESIS Project!70

Stereotypes

• The standard lightweight mechanism for
extending UML.
• If you need a modelling construct that isn’t in UML but

which is similar to something that is, use a stereotype.
• Textual annotation of diagramming elements.

• Many standard stereotypes; can define own.

• Example: UML interface.

+rotate()

«interface»
Figure

UML and OO Basics

 Eclipse ECESIS Project!71

Some Built-in Stereotypes

• <<access>>: public contents of target package are
accessible to the source package namespace.

• <<create>>: feature creates an instance of the
attached classifier.

• <<friend>>: the source has access to the target of
a dependency.

• <<instantiate>>: source classifier creates instances
of the target classifier.

• <<invariant>>: constraint that must hold for the
attached classifiers/relationships.

UML and OO Basics

 Eclipse ECESIS Project!72

Aggregation and Composition

• Associations model general relationships between
classes and objects.
• At the implementation level, they can be defined in terms of

reference types.

• Further relationships are provided with UML:
• aggregation: “part-of”
• composition: like aggregation but without sharing.

• Troublesome! Let’s look at them more closely.

UML and OO Basics

 Eclipse ECESIS Project!73

Aggregation

• An instance of Style is part-of zero or more instances of
Circle.

• Style instances may be shared by many Circles.
• Semantically fuzzy: what’s the difference between this and

association with suitable multiplicity?
• ... and how would you implement it in Java?

• Advice: if you can’t be entirely precise about the
distinctions between aggregation and other relationships,
don’t use it.

+color
+isFilled

Style

+radius

Circle
*1

UML and OO Basics

 Eclipse ECESIS Project!74

Composition

• A Motor is composed of one or more Cylinders.
• Cylinders are “integral parts” of Motors.
• The part objects (Cylinders) belong to only one whole.
• The parts live and die with the whole.

• Sometimes called “value types” or “expanded
types”.

Cylinder Motor

1..*

UML and OO Basics

 Eclipse ECESIS Project!75

Using Composition & Aggregation

• Use association whenever you are in doubt.
• Association can always be refined to more specific forms of

relationship between modelling elements.

• Use aggregation judiciously - its semantics is
extremely fuzzy.

• Associations with 1..1 multiplicity can be considered
equivalent to compositions (since they support
cascading deletes too).

UML and OO Basics

 Eclipse ECESIS Project!76

Interfaces and Abstract Classes

• A pure interface provides no implementation: it
declares operations only.
• Corresponds to interface in Java.

• An abstract class may have some implemented
methods and fields, but not everything need be
implemented.
• Corresponds to virtual classes in C++.

+to_front()
+to_back()

+width : int
+height : int

Window
«interface»
Figure

UML and OO Basics

 Eclipse ECESIS Project!77

Association Classes

• Association classes can be used to add attributes,
operations, and constraints to associations.

Person Company

start_date : Date

Employment

* 0..1

+employer

➢ Could add an attribute to Person indicating start
date of employment, but this is really an attribute
of the relationship between Person and Company.

UML and OO Basics

 Eclipse ECESIS Project!78

Why Use Association Classes?

• The Employment information can also be expressed as
follows.

Person Company
+start_date : Date
Employment

1 0..1 * 1

* 0..1

➢ The association class implicitly includes the
constraint that there is only one instance of the
association class between any two participating Person
and Company objects.

➢ This must otherwise be stated explicitly.

UML and OO Basics

 Eclipse ECESIS Project!79

Parameterized Classes (Templates)

• The notion of parameterized class is present in
Java 1.5 and is available in C++ and Eiffel.

• Lets you define collections of an arbitrary type.
• Set[T], Sequence[T], Binary_Tree[T]
• T is a type parameter that must be filled in in order to

produce a type that can be used to instantiate objects.

• In C++:
 class Set<T> {
 void insert(T new_element);
 void delete(T removed_element);
 ...
 }

UML and OO Basics

 Eclipse ECESIS Project!80

Templates in UML

• <<bind>> is a stereotype on the dependency.

• Indicates that Employee_Set will conform to the interface
of Set.

• You cannot add features to the bound element

+insert(in new_element : T)

Set

T

Employee_Set

«bind»
Employee() Bound element

UML and OO Basics

 Eclipse ECESIS Project!81

Packages

• Packages can be used to group any collection of
modelling elements (classes, objects, other
packages, etc.)

• Relationships between packages can be expressed in
terms of dependencies.
• A dependency exists between two elements if changes to one

element (the supplier) may cause changes to the second
element (the client).

• Many types of dependencies in UML. Note that association and
generalization are forms of dependencies.

UML and OO Basics

 Eclipse ECESIS Project!82

Example - Packages

• If Customer DB changes, then Order Taking UI must be looked at to see if it needs to
change.

• If packages contain classes, then a dependency between packages exists if there are
dependencies between classes.

• UML 2.0 introduces package merge which is a useful way of composing multiple packages.

Order Taking UI Javax Swing Maintenance UI

Customer DB

UML and OO Basics

 Eclipse ECESIS Project!83

Example: Layered Architectures and Facades

• If Orders changes, Order Taking UI may be shielded from these
changes by Customer DB.

• Similar to Java imports, but not C++ include.

• Reduce interfaces of packages by using info hiding and the
Facade design pattern (delegating responsibility).

Order Taking UI

Customer DB

Orders

UML and OO Basics

 Eclipse ECESIS Project!84

Package Generalization

• Generalization can be applied to packages.

• Defines a subtyping and a dependency relationship
between packages.
• Interface of child must be compatible with parent.
• Related to concept of an MDA component

Database Interface

Oracle Interface DB2 Interface

UML and OO Basics

 Eclipse ECESIS Project!85

Designing a Class’s Interface

• A critical step in constructing a class is to design its
interface.
• Particularly critical in multi-person projects, since the interface

is used for communication and helps clarify responsibilities.

• Only concerned with client view.

• Desirable characteristics:
• Simple, easy to learn, memorable, easy to change.

• Discuss several small issues in interface design.

UML and OO Basics

 Eclipse ECESIS Project!86

Avoid Function Side-Effects

• In C++/Java, it’s often standard practice to have
functions with side-effects, e.g.,

 int x;
 int C::foo(int a,b) {
 x = a+b;
 return(a-b);
 }

• Avoid this wherever possible - make your functions
return values but not change state.

• Difficult to understand; lose referential
transparency.

UML and OO Basics

 Eclipse ECESIS Project!87

Example - getint() in C

• getint() reads a new input integer and returns its
value; this has a side-effect (file pointer).

• If you call getint() twice you may get different
results.
• getint()+getint() != 2*getint() in general.

• Thus, we cannot reason about getint() as if it was
a mathematical function (Leibniz).

Function/Procedure Separation Principle
Functions should not produce abstract side-effects.

UML and OO Basics

 Eclipse ECESIS Project!88

How It Should Be Done

• Provide a class File.

• input is a variable of type File.

• To read new input:
 input.advance(); n = input.last_int;

• A File object contains attributes for buffering the
last inputs.

• Question: is it ever reasonable to allow functions to
have side effects?

UML and OO Basics

 Eclipse ECESIS Project!89

How Many Method Arguments?

• To make classes more reusable, it is worth paying
attention to the number of arguments given to
methods.

• Example: FORTRAN non-linear ODE solver routine
has 19 arguments: 4 var parameters, 3 arrays, 6
functions (each with arguments).

• Non-linear solvers in many C++ math libraries have
zero arguments. How?

UML and OO Basics

 Eclipse ECESIS Project!90

Operands and Options

• An argument to a routine is an operand or an option.
• An option is an argument for which a default value could have

been found if the client hadn’t specified it.
• An operand is needed data.

• As classes evolve, operands tend to stay the same,
but options are often added or removed.
Method arguments should be operands only.

• Options to methods are set in calls to separate
methods:

 document.set_print_size(“A4”);
 document.set_colour(); document.print();

UML and OO Basics

 Eclipse ECESIS Project!91

Class Size

• How do we measure the size of a class: #LOC,
number of methods, number of inherited methods?

• Does the size of a class matter?
• Paul Johnson says
• “Class designers are often tempted to include lots of

features ... The result is an interface where the few commonly
used features are lost in a long list of strange routines.”

• Not always the case - if a method is conceptually
relevant to a class, and it does not duplicate an
existing method, then it is reasonable to add it.

• Example: a Complex number class with a + operator
as well as an add method; fills different needs.

UML and OO Basics

 Eclipse ECESIS Project!92

Statecharts

• Class diagrams and packages describe static
structure of a system.

• Interaction diagrams describe the behaviour of a
collaboration.

• How about describing the behaviour of a single
object when it reacts to messages?
• constraint language like OCL (which we’ll see soon)
• statecharts

• Statecharts describe all possible states that an
object can get in to, and how the object responds to
events.

UML and OO Basics

 Eclipse ECESIS Project!93

Example: Statechart

Checking Dispatching

Waiting Delivered

/ get first item

[All items checked && all items available]

D
elivered

Item Received [all items available]

Item Received [some items not in stock]

[N
ot

 a
ll

ite
m

s
ch

ec
ke

d]
 /

ge
t n

ex
t i

te
m

UML and OO Basics

 Eclipse ECESIS Project!94

Statechart Notation

• Syntax for a transition is
 Event [Guard] / Action

• Actions are associated with transitions; they are
short, uninterruptible processes.

• Activities are associated with states, and may be
interrupted.

• A guarded transition occurs only if the condition
evaluates true; only one transition can be taken.

• When in a state with an Event, a wait takes place
until the event occurs.

UML and OO Basics

 Eclipse ECESIS Project!95

When to Use Statecharts

• They are good at describing the behaviour of an
object across several scenarios of use.

• They are not good at describing behaviour that
involves a number of collaborating objects (use
interaction diagrams for this).
• Not usually worthwhile to draw a statechart for every class in

the system.
• Use them only for those classes that exhibit interesting

behaviour.
• e.g., UI and control objects.

UML and OO Basics

 Eclipse ECESIS Project!96

Use Cases - Review

• Use cases are commonly described as telling a
story – of how a user carries out a task.

• A use case is a document that describes the
sequence of events of an actor using a system to
complete a scenario.

• An actor is external to the system, i.e., a human
operator or another system.

• A scenario describes a complete sequence of
events, actions and transactions required to
produce or complete something of value.

UML and OO Basics

 Eclipse ECESIS Project!97

Scenarios

• A scenario is a sequence of steps describing an
interaction between an actor and a system.

• Example:
 The customer browses the online catalogue and adds desired

items to their basket. When the customer wishes to pay, the
customer specifies the mode of shipping and their credit card
information, and confirms the sale. The system validates the
credit card authorisations, and confirms the sale via an
immediate follow-up e-mail.

• This is just one possible scenario; failure of the credit
card authorisation would be a separate scenario.

UML and OO Basics

 Eclipse ECESIS Project!98

Identifying and Applying Use Cases

• Use cases can interact with any number of actors.

• Discover use cases by first identifying actors. For
each actor, consider the scenarios that they may
initiate.

• Common Error: representing individual system
operations as a use-case, e.g., create transaction,
destroy record.

• Use cases represent services that may be
implemented by multiple operations
• Usually they are a relatively large process.

UML and OO Basics

 Eclipse ECESIS Project!99

Example – Use Case Text  
Buy a Product – General Case

1. Customer browses catalogue and selects items to
buy, placing them in the shopping cart.

2. Customer goes to check out.
3. Customer fills in desired shipping info (address, type

of delivery).
4. System presents full price.
5. Customer provides credit card information.
6. System authorises purchase.
7. System confirms sale via e-mail.

UML and OO Basics

 Eclipse ECESIS Project!100

Example Use Case Text  
Authorisation Failure

• The authorisation of the credit card may fail (over
credit limit, expired card, system down).

• A use case is needed for this scenario.
• At step 6, the system fails to authorise the credit card

purchase.
• Allow the customer to re-enter credit card information and try

again.

• Here, we are extending an existing use case (buy a
product) with a new use case.

UML and OO Basics

 Eclipse ECESIS Project!101

Example Use Case Text  
Alternative – Regular Customer

•We may want to support returning customers,
allowing customers to save their credit card or
address information in the system.

• A use case is needed for handling this type of
interaction.
3.a) System displays current shipping, pricing information and

last four digits of previously entered credit card.
 b) Customer may accept or override these data.
Return to primary scenario at step 6.

UML and OO Basics

 Eclipse ECESIS Project!102

How Much Detail is Needed?

• Clearly, you can spend a lot of time writing out use
cases in tedious detail.

• The amount of detail that you need depends on the
risk inherent in the use case.

• Advice:
• during elaboration, go into detail on only a few (critical) use

cases
• as you iterate through development, you’ll add more detail as it

becomes necessary to implement each use case.

UML and OO Basics

 Eclipse ECESIS Project!103

Types of Use Cases

• Use cases come in several flavours. The distinctions
aren’t always useful.

• Use cases can be categorized as :

• Primary: describes major system scenarios
• Secondary: describes minor or rare scenarios
• Optional: describes scenarios that may not

be implemented.

• Very useful for allocation of resources and
timetabling.

UML and OO Basics

 Eclipse ECESIS Project!104

Asset Trading System

Actor Description
Investor A person controlling portfolios of assets.
Database A system that maintains a permanent record of investor portfolios
Broker A person or system that allows an investor to buy or sell assets.
Stock market A system that allows the investor to examine assets that are currently

being traded.

Use case Description
Access Database Load / save portfolio data to / from persistent storage
Sell Asset Sell an asset to a broker
Buy Asset Buy an set from a broker
Browse Portfolio Browse assets in a portfolio
Browse Stock Market Browse stock market listings of asset details
Calculate Portfolios value Calculate the value of the assets stored in a portfolio

using the current stock market pricing.

UML and OO Basics

 Eclipse ECESIS Project!105

Example Use Case  
Buy Asset

Use case : Buy Asset
Actors : Investor, Broker
Type : Primary

Description :
 The investor selects an asset to be bought. This information is

passed to a specific broker, who performs this transaction. When
complete the purchased asset is added to the investor’s portfolio and
his current account debited by the cost of the assets plus the brokers
fee.

UML and OO Basics

 Eclipse ECESIS Project!106

Use Case (Expanded with Detail) 
Buy Asset

• Use case : Buy Asset
• Actors : Investor, Broker
• Purpose : Buy assets to add to a portfolio
• Type : Primary, Essential
• Description : The investor selects an asset to be bought.

This information is passed to a specific broker, who performs
this transaction. When this transaction is complete the
selected asset is added to the investors portfolio and his
current account debited by the cost of the assets plus the
brokers fee.

• Cross Reference : System function 1.

UML and OO Basics

 Eclipse ECESIS Project!107

Use Case Course of Events 
Buy Asset

• It is sometimes useful to specify a very detailed
sequence of events for a scenario.

• An event is something interesting with respect to a
system.

• Note similarity to event-driven programming model.

• Example:
• Actor action: the investor selects the “buy asset” operation.
• System response:
• check investor’s current balance and portfolio.
• if investor’s current balance > credit limit then see section “Credit

Limit Reached”
• if investor’s portfolio has 10 assets then see section “Asset Limit

Reached”

UML and OO Basics

 Eclipse ECESIS Project!108

Example Use Case  
Calculate Portfolio Value

Use case : Calculate Portfolio Value
Actors : Investor, Stock Market
Type : Secondary

Description : The investor selects a portfolio to be valued. For each asset
contained within this portfolio the system retrieves its current traded
value from the stock market. The value of the assets contained within
this portfolio is now calculated.

UML and OO Basics

 Eclipse ECESIS Project!109

Use Case Diagrams

• These illustrate the relationships that exist between a set
of use cases and their actors.

• Their purpose is to allow a quick understanding of how
external actors interact with the system.

Actor ActorUseCase

Line of communication. Arrow
indicates flow of information

Note

UML and OO Basics

 Eclipse ECESIS Project!110

Use Case Diagrams 
Relationships

• If one use case initiates or duplicates the behavior of another use
case it is said to ‘use’ the second use case. This is shown as:

• If one use case alters the behavior of another use case it is said to
‘extend’ the second use case. This is shown as:

UseCase A UseCase B

<<uses>>

UseCase A UseCase B

<<extends>>

UML and OO Basics

 Eclipse ECESIS Project!111

Use Case Diagrams 
Relationships

• If one use case is similar to another, but does a little
bit more, you can apply generalization.

Capture Deal

Limits Exceeded

What is the difference between <<extend>> and generalization?

With <<extend>>, the base use case must specify extension
points.

UML and OO Basics

 Eclipse ECESIS Project!112

Use Case Relationships – 
Some Guidelines

• It’s usually easier to think about normal cases first,
and worry about variations afterwards.

• Use <<use>> when you are repeating yourself in two
separate use-cases.

• Use generalization when you are describing a variation
on a behaviour that you want to capture informally.

• Use <<extend>> when you want to more accurately
capture a variation on behaviour.

UML and OO Basics

 Eclipse ECESIS Project!113

Example Use Case Diagram  
(…without stereotypes…)

Database

Access Database Buy Asset

Browse Portfolio

Broker

Sell Asset

Investor

Browse Stockmarket listingsCalculate Portfolio's Value

Stockmarket

UML and OO Basics

 Eclipse ECESIS Project!114

Example Use Case Diagram  
Is this really helpful?

Database

Stockmarket

Calculate Portfolio's Value
Add Asset To Portfolio

Remove Asset From Portfolio

Save Portfolio

Load Portfolio

Create Portfolio

Destroy Portfolio

Browse Stockmarket

Browse Portfolio

Buy Asset

Sell Asset

Create Account

Destroy Account

Investor

Read Transaction Results

Broker

UML and OO Basics

 Eclipse ECESIS Project!115

Use Diagram 
Another Example

Trading Manager

Set Limits Update Accounts

Accounting System

Analyze Risk

Price Deal

Capture Deal

Valuation

Limits Exceeded

Salesperson

Trader

«uses»

«uses»

UML and OO Basics

 Eclipse ECESIS Project!116

Requirements for an ABM

• A bank has several ABMs connected via a WAN to a central bank
server.

• Each ABM has a card reader, cash dispenser, keyboard, display,
and a receipt printer.

• A customer can withdraw funds from chequing or savings
accounts, query their balance, or transfer funds from one
account to another.

• The customer PIN needs to be validated against the server. The
card is confiscated if a third validation attempt fails. Cards that
have been reported lost or stolen are also confiscated.

• An ABM operator may start/shutdown the machine to replenish
cash.

UML and OO Basics

 Eclipse ECESIS Project!117

Use Case Diagram

UML and OO Basics

 Eclipse ECESIS Project!118

Detailed Use Case for Withdraw Funds

• Summary: customer withdraws a specific amount of
funds from a valid bank account.

• Actors: ABM customer.

• Dependencies: include “Validate PIN use case”.

• Precondition: ABM is idle displaying a welcome
message.

• Detailed Description: …

UML and OO Basics

 Eclipse ECESIS Project!119

Detailed Description of Withdraw Funds Use Case

1. Include “Validate PIN” use case
2. Customer selects Withdraw Funds, enters the

amount, and selects the appropriate account.
3. System checks whether customer has enough funds

in the account.
4. …
7. System ejects card.
8. System displays welcome message.

• What about alternative cases?

UML and OO Basics

 Eclipse ECESIS Project!120

Alternative Cases & Postcondition

• If the system determines that the account is
invalid, it displays an error message and ejects the
card.

• If the ABM is out of funds the system displays an
apology.

• Others?

• What about a postcondition for the use case?
• Interesting! Need a postcondition for different parts of the

use case, e.g., successful withdrawal, cancelled transaction,
completion of the scenario, etc.

UML and OO Basics

 Eclipse ECESIS Project!121

A Bad Use Case

UML and OO Basics

 Eclipse ECESIS Project!122

Factoring Use Cases

UML and OO Basics

 Eclipse ECESIS Project!123

Risks Using Use Cases

• Use cases emphasise ordering.
• Take the use case “Place An Order”.
• A credit card is validated, database is updated, and a

confirmation number is issued.

• Ordering sequences of actions at the requirements
stage may be premature for OO development - leads
to fragility.

• In OO we don’t focus on functions, i.e., “do a then
b”. Instead we find abstractions.

• Use cases make it easy to get caught in a top-down
(functional) development style.

UML and OO Basics

 Eclipse ECESIS Project!124

Example: Buying a House

• The structure of the use case looks like this:

UML and OO Basics

 Eclipse ECESIS Project!125

Sequencing Too Soon!

• The OO solution will be a single class:
class PURCHASE_PROPERTY {
 boolean property_found();
 boolean loan_approved();
 /** *@post property_found(); **/
 void find_property();
 /** *@post loan_approved(); **/
 void get_loan();
 /** *@pre property_found() && loan_approved() **/
 void sign_contract();
}

• Finding a property and getting a loan can happen concurrently.

UML and OO Basics

 Eclipse ECESIS Project!126

Use Case Warning!

• Use cases are reasonable for late requirements (i.e.,
system boundary).

• Except with an experienced development team, use
cases can be dangerous for OO decomposition.

• Use cases can be converted into interaction diagrams.
• ... which can in turn be converted into test cases, which can be

used to validate system designs.

