
Introduction to the
Eclipse Parallel Tools Platform

Slides by
Greg Watson, Beth Tibbitts,

Jay Alameda, Galen Arnold, Steve Brandt, Chris Navarro, Jeff Overbey, and Wyatt Spear

Jay Alameda, NCSA
jalameda@ncsa.illinois.edu

Jeff Overbey, Auburn U.
jeffreyoverbey@acm.org

Portions of this material are supported by or based upon work supported by
• The Defense Advanced Research Projects Agency (DARPA) under its Agreement No.

HR0011-07-9-0002
• The Blue Waters sustained-petascale computing project, which is supported by the National

Science Foundation (award number OCI 07-25070)
• The United States Department of Energy under Contract No. DE-FG02-06ER25752
• The SI2-SSI Productive and Accessible Development Workbench for HPC Applications,

which is supported by the National Science Foundation under award number OCI 1047956

July 27, 2015

Tutorial Outline
Time

(Tentative)
Module Topics Presenter

1:30-2:00 Eclipse Installation
Intro/Overview

 Installation of Eclipse and PTP
 Eclipse overview

Jeff/Jay

2:00-2:45 Eclipse basics  Synchronized projects
 Git support
 Editor features

Jeff

2:45-3:15 BREAK

3:15-3:30 (continue Basics) Jeff

3:30-4:30 Build & Run (1:00)  GUI terminal
 Building with Make
 Target system configurations
 Launching a parallel application
 Modules/environment mgmt
 Wrap-up

Jay

Installation instructions (and these slides) are available at
http://wiki.eclipse.org/PTP/tutorials/XSEDE15

Final Slides, Installation
Instructions

Please go to
http://wiki.eclipse.org/PTP/tutorial
s/XSEDE15 for slides and
installation instructions
Local copy of downloads:

http://dns.conference.xsede.org/

Installation

Objective
 To learn how to install Eclipse and PTP

 Contents
 System Prerequisites
 Eclipse Download and Installation of “Eclipse for

Parallel Application Developers”
 Installation Confirmation
Updating the PTP within your Eclipse to the latest

release

Installation Install-1

System Prerequisites
 Local system (running Eclipse)

 Linux (just about any version)
MacOSX (10.5 Leopard or higher)
Windows (XP on)

 Java: Eclipse requires Sun or IBM Java
Only need Java runtime environment (JRE)
 Java 1.7 or higher

Java 1.7 is the same as JRE Version 7
 The GNU Java Compiler (GCJ), which comes standard

on Linux, will not work!
OpenJDK, distributed with some Linux distributions,

comes closer to working, but should not be used.
 See http://wiki.eclipse.org/PTP/installjava

Install-2Installation

Eclipse Packages
 The current version of Eclipse (4.5) is also

known as “Mars”
 Eclipse is available in a number of different

packages for different kinds of development
 http://eclipse.org/downloads

 For PTP, we recommend the all-in-one
download:
 Eclipse for Parallel Application Developers

We often call this the “Parallel Package”

Install-3Installation

New! See
next slide
for update

New! Parallel Package updated
 The public Parallel Package on eclipse.org/downloads is only

updated three times yearly
 We are now building updated all-in-one packages with new

releases of PTP already installed.
 You can use this, or just update the original one

 See next slides for updating…
To use already-updated package:
 Go to http://eclipse.org/ptp/downloads.php
 Under File Downloads:
 Click on the link, and on the file downloads page, see

Parallel Application Developers Package and download
the appropriate file for your platform
 Mac OS X
 Linux X86 and X86_64
 Windows x86 and x86_64

 Unzip or untar it
Install-4Installation

Exercise

1. Download the “Eclipse for Parallel Application
Developers” package to your laptop
 Your tutorial instructions will provide the location of

the package
 Make sure you match the architecture with that of

your laptop
2. If your machine is Linux or Mac OS X, untar

the file
 On Mac OS X you can just double-click in the Finder

3. If your machine is Windows, unzip the file
4. This creates an eclipse folder containing the

executable as well as other support files and
folders

Install-5Installation

Starting Eclipse
 Linux

 From a terminal window, enter
“<eclipse_installation_path>/eclipse/eclipse &”

 Mac OS X
 From finder, open the eclipse folder where you installed
 Double-click on the Eclipse application
 Or from a terminal window

 Windows
 Open the eclipse folder
 Double-click on the eclipse executable

Install-6Installation

 Eclipse prompts for a workspace location at
startup time

 The workspace contains all user-defined data
 Projects and resources such as folders and files
 The default workspace location is fine for this tutorial

Specifying A Workspace

The prompt can be
turned off

Install-7Installation

Eclipse Welcome Page

Displayed when Eclipse is run for the first time
Select “Workbench”

Install-8
Installation

Checking for PTP Updates

 From time-to-time there may be newer PTP
releases than the Mars release
Mars and “Parallel package” updates are released only

in September and February

 PTP maintains its own update site with the
most recent release
 Bug fix releases can be more frequent than base

Eclipse (e.g. Luna), and what is within the parallel
package

 You must enable (and install from) the PTP-
specific update site before the updates will be
found

Install-9Installation

Updating PTP
 Now select Help>Install New Software…

 In the Work With: dropdown box, select this update site,
or enter it:
http://download.eclipse.org/tools/ptp/updates/mars

Install-10Installation

Updating PTP (2)

 Easiest option is to “Select All” - which updates existing
PTP features and adds a few more

Note: for this tutorial, this installs extra features we’ll
refer to later anyway (TAU, PerfSuite)

 Select Next to continue updating PTP
 Select Next to confirm features to install

Install-11Installation

Updating PTP (3)

 Accept the License agreement and select Finish

Install-12Installation

Updating PTP - restart

 Select Yes when prompted to restart Eclipse

Install-13Installation

Updating Individual Features

 It’s also possible (but a bit tedious) to update all the PTP
features without adding any new features
 Open each feature and check the ones you want to update

 Icons indicate: Grey plug: already installed
Double arrow: can be updated
Color plug: Not installed yet

 Note: if network is slow, consider unchecking:

Install-14Installation

Restart after Install
 If any new top-level features

are installed, they will be
shown on the welcome screen

 We only updated PTP, so we
land back at C/C++
Perspective

Install-15Installation

 Help>About or Eclipse > About Eclipse …
will indicate the release of PTP installed

 Further Help>Check for Updates will find future updates on
the PTP Update site

Exercise

1. Launch Eclipse and select the default
workspace

2. Configure Eclipse to check for PTP updates
3. Update all PTP features to the latest level
4. Install the optional features of PTP, including

TAU and PerfSuite
– Selecting all features accomplishes 3. and 4.

5. Restart Eclipse once the installation is
completed

Install-16Installation

Intro-0Introduction

Introduction

Objective
 To introduce the Eclipse platform and PTP

 Contents
 New and Improved Features
What is Eclipse?
What is PTP?

Intro-1

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

Introduction

Intro-2

Eclipse Features

 Full development lifecycle support
 Revision control integration (CVS, SVN, Git)
 Project dependency management
 Incremental building
 Content assistance
 Context sensitive help
 Language sensitive searching
Multi-language support
 Debugging

Introduction

Intro-3

Parallel Tools Platform (PTP)

 The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

 Features include:
 An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

 A scalable parallel debugger
 Parallel programming tools

(MPI, OpenMP, UPC, etc.)
 Support for the integration

of parallel tools
 An environment that simplifies the

end-user interaction with parallel systems
 http://www.eclipse.org/ptp

Introduction

Eclipse PTP Family of Tools
Coding & Analysis

(C, C++, Fortran)

Parallel Debugging

Launching &
Monitoring

Performance Tuning
(TAU, PerfSuite, …) Intro-4Introduction

How Eclipse is Used

Intro-5

Remote
Source
Code

Introduction

Local
Source
Code

Edit/Build

Launch/Monitor

Debugging

Performance Tuning

Eclipse Basics
Objective

 Learn about basic Eclipse workbench concepts:
projects,

 Learn about projects: local, synchronized, remote
 Contents

Workbench components: Perspectives, Views, Editors
 Local, remote, and synchronized projects
 Learn how to create and manage a C project
 Learn about Eclipse editing features

Eclipse Basics Basic-0

Eclipse Basics
 A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspectiveEclipse Basics

view
view

view

editor

 The workbench represents
the desktop development
environment
 Contains a set of tools

for resource mgmt
 Provides a common way

of navigating through
the resources

 Multiple workbenches
can be opened at the
same time

 Only one workbench can
be open on a workspace
at a time

Basic-1

Perspectives

 Perspectives define the layout of views and
editors in the workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 C/C++ Perspective for manipulating compiled code
Debug Perspective for debugging applications
 System Monitoring Perspective for monitoring

jobs
 You can easily switch between perspectives
 If you are on the Welcome screen now, select

“Go to Workbench” now

Eclipse Basics Basic-2

Switching Perspectives

 Three ways of changing
perspectives

1. Choose the Window>Open
Perspective menu option
Then choose Other…

2. Click on the Open Perspective button in the
upper right corner of
screen (hover over it to
see names)

3. Click on a
perspective
shortcut button

Eclipse Basics Basic-3

Which Perspective?

Eclipse Basics Basic-4

 The current perspective is displayed in the title
bar

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
Menu actions only

apply to the view
 Views can be resized

view

view view

Eclipse Basics Basic-5

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

Eclipse Basics Basic-6

Expand a View

 Double-click on a view/editor’s tab to fill the
workbench with its content;

 Repeat to return to original size

Window > Reset Perspective
returns everything to original positions

Basic-7Eclipse Basics

Double
click

Double
click

Help

 To access help
 Help>Help Contents
 Help>Search
 Help>Dynamic Help

 Help Contents provides
detailed help on different
Eclipse features in a
browser

 Search allows you to
search for help locally, or
using Google or the Eclipse
web site

 Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Eclipse Basics Basic-8

Eclipse Preferences
 Eclipse Preferences allow

customization of almost
everything

 To open use
 Mac: Eclipse>Preferences…
 Others:

Window>Preferences…

 The C/C++ preferences
allow many options to be
altered

 In this example you can
adjust what happens in
the editor as you type.

Eclipse Basics Basic-9

Preferences Example
More C/C++ preferences:
In this example the

Code Style preferences
are shown
 These allow code to be

automatically
formatted in different
ways

Eclipse Basics Basic-10

Exercise
1. Change to a different perspective
2. Experiment with moving and resizing views

 Move a view from a stack to beside another view
 Expand a view to maximize it; return to original size

3. Save the perspective
4. Reset the perspective
5. Open Eclipse preferences
6. Search for “Launching”

7. Make sure the “Build (if required) before
launching” setting is disabled

Eclipse Basics Basic-11

Optional Exercise
Best performed after learning about projects, CVS, and editors

1. Use source code formatting to format a source file, or a region
of a source file
 Use Source>Format menu

2. In Eclipse Preferences, change the C/C++ source code style
formatter, e.g.
 Change the indentation from 4 to 6
 Make line wrapping not take effect until a line has a

maximum line width of 120, instead of the default 80
 Save a (new) profile with these settings
 Format a source file with these settings

3. Revert the file back to the original – experiment with
 Replace with HEAD, replace with previous from local history,

or reformat using original style

Eclipse Basics Basic-12

Creating a Synchronized Project
Objective

 Learn how to create and use synchronized projects
 Learn how to create a sync project
From a source code repository in Git

 Contents
 Eclipse project types
 Clone a git repository; create a synchronized project
 Using synchronize filters
 Remote Terminal view

Synchronized Projects Sync-0

Project Location
 Local

 Source is located on local machine, builds happen locally
 This is the default Eclipse model

 Synchronized
 Source is located on both local and remote machine(s),

then kept in synchronization by Eclipse
 Building and launching happens remotely

(can also happen locally)
 Used mainly for scientific and supercomputing

applications
 There are also remote-only projects, but these

have limitations and are not covered here

Synchronized Projects Sync-1

Sync-2

Synchronized Projects
 Projects types can be:

-2

File Service Index Service

Launch Service

Build Service

Debug Service

Local source
code

Source code
copy

Local Remote

Compute

Edit Search/Index
Navigation

Synchronize

Executable

Synchronized Projects

Static
Analysis

Revision Control Systems
(Source Code Repositories)

 Eclipse supports a range of revision control
systems, such as CVS, Git, and Subversion (and
others)

 These are distinct from synchronized projects
 Revision control systems can be used in

conjunction with synchronized projects
 Synchronized projects are typically not used for

revision control

Synchronized Projects Sync-3

Sync-4

Synchronized Project Creation
 Local -> Remote

 Projects start out local then are synchronized to a
remote machine

 Three options
 Created from scratch
 Imported from local filesystem
 Imported from source code repository (Git) <- this tutorial

 Remote -> Local
 Projects start out on remote machine then are

synchronized to the local system
 Two options

 Already on remote system
 Checked out from source code repository

-4Synchronized Projects

Sync-5

C, C++, and Fortran Projects
Build types

Makefile-based
 Project contains its own build command – typically a

makefile (or makefiles) for building the application –
but can be any build scripts, etc.

Managed
 Eclipse manages the build process, no makefile

required by the user

-5Synchronized Projects

Create Synchronized project on the local machine
at the same time.

Two steps:

Sync-6Synchronized
Projects

Check out source code
from Git repository

 Clone Git Repo
 Create project files from within the clone

Clone the git repo

Sync-7Synchronized
Projects

Open Git perspective
Window > Perspective
> Open Perspective >
Other

 Select Git

 In the view, select
Clone a Git repository one of two ways

Clone a Git repository
and add the clone to this
view

If there are no git repos yet
you will see this:

Specify remote git repo location
 URI: https://github.com/xsede14/ptp-tutorial.git

 Fill in URI and
other
fields fill
themselves

 Select Next>

Sync-8Synchronized
Projects

Finish git cloning

Sync-9

 Select Next> to choose the (only) branch
 Then select Finish> to use the default git

destination (Remember this, you’ll need it later)

Synchronized
Projects

Remember:

Import project from cloned repo

 After repo is cloned, expand ptp-tutorial and Working
Directory

 We are importing only
one project

 Select shallow

 Right mouse,
Import Projects…

Sync-10Synchronized
Projects

Create new project with wizard

 Select Use the New Project Wizard to be
able to create the project as a Synchronized
C/C++ project at creation

 Select Finish
to finish the git
cloning, and you
will be taken to
Sync project
info next.

Sync-11Synchronized
Projects

New Project Wizard

Sync-12Synchronized Projects

We are creating the project
directly as a Synchronized
C/C++ project

 Expand Other
 Select

Synchronized
C/C++ Project

 Select Next>

Synchronized Projects Sync-13

 Enter the Project Name
 E.g. “shallow”

 Next we will specify the Local
Directory where the local files
are located (cloned from git)
 Files are synchronized here, and we

will edit them locally

 …and the Remote Directory
where the remote files are located
 Our remote target machine,

where we will build, run, & debug

 Use Modify File Filtering… if required
(see later slide)

New Synchronized Project Wizard

See Next slides…

Local and remote directories
1. For Local directory,

NOTE: Uncheck Use default
location
and browse to the location you
chose for git repo
- the shallow dir beneath that

2. To specify the Remote directory,
first Create a connection to the
remote target machine by
selecting New…

Sync-14Synchronized
Projects

Creating a Connection

 In the New
Connection dialog
 Enter a Connection

name
for the remote host

 Enter host name,
user name,
and user password
or
other credentials

 Select Finish

Sync-15Synchronized Projects

Specifying the remote directory
 After the connection has been specified,

back in the New Synchronized Project window..

 For Remote directory, you can enter
its location. If it does not
exist, it will be created.

 If the remote dir exists, you can select
it with the Browse… Note that this
is the first time that the Connection
information is utilized.

 Later slides in this section show
how to fix Connection
if e.g. password or userid are
entered incorrectly

Sync-16Synchronized
Projects

Sync-17

 Choose the Project Type
 This tutorial’s code has its own makefile,

so use
Makefile Project>Empty Project

 Otherwise, choose the type of project
you want to create

 Choose toolchain for remote build
 Use a toolchain that most closely

matches the remote system

 Choose a toolchain for the local
build (OPTIONAL)
 This is optional if you don’t plan to build

on the local machine
 This is used for advanced

editing/searching

 Click Finish to create the project

Project Type & Toolchain

 You should now see the “shallow” project in your
workspace

 Project is synchronized
with remote host

Project successfully created

Sync-18

Expand the
project root
to see the
project’s
contents

Synchronized Projects

Status area in lower right
shows Synchronization
progress:

Synchronized Project

 Back in the Project
Explorer, decorator on
project icon indicates
synchronized project

 Double-+ icon

 C Project w/o Sync

 Synchronized Project

Sync-19Synchronized Projects

Synchronize Filters

 If not all files in the remote project should be
synchronized, a filter can be set up
 For example, it may not be desirable to synchronize

binary files, or large data files
 Filters can be created at the same time as the

project is created
 Click on the Modify File Filtering… button in the

New Project wizard
 Filters can be added later

 Right click on the project and select
Synchronize>Filter…

Sync-20Synchronized Projects

Synchronize Filter Dialog

 Files can be filtered individually
by selecting/unselecting them in
the File View at the top

 Include or exclude files based on
paths and expressions

 Suggestion: add filter for
‘shallow’ so the executable, built
on remote machine, doesn’t get
synced back

Sync-21Synchronized Projects

Synchronized Project Properties
 Synchronized configurations

can be managed through the
project properties

 Open the project properties
by right-clicking on the
project and selecting
Properties
 Select Synchronize

 This is the same as using the
Synchronize>Manage…
menu

Sync-22Synchronized Projects

Forcing a Resync
 If Auto-sync is set, the project

should automatically resync with
remote system when things
change (e.g. after build)

 Sometimes you may need to
do it explicitly

 Right click on project and select
Synchronization>Sync Active
Now
- or use the toolbar icon

 Status area in lower right shows
when Synchronization occurs

Sync-23Synchronized Projects

Remote Terminal
 There is a remote terminal that can provide a shell from within Eclipse

using the connection you created for your synchronized project
 Right-Click on your synchronized project and select “Show Terminal”

Or

 If view is not in your workbench:
Select Window>Show View>Other…
Choose Terminal from the Terminal folder

 In the Terminal view, click on the
Connect button

 It will use the previously configured connection from the dropdown, or
create a new one …more in Advanced Features section…

Sync-24Synchronized Projects

 If you need to change remote connection
information (such as username or
password), open Preferences
 Win/Linux: Window > Preferences
 Mac: Eclipse > Preferences

and use Remote Development >
Connections

Changing Remote Connection Information

Sync-25Synchronized Projects

Sync-26

To Edit a
connection:
 Close the

remote
connection first

 Right-click and
select Edit
 Change host,

userid,
password,
etc.

 Note: Remote Host may be closed/stopped
 Any remote interaction starts it
 No need to restart it explicitly

Synchronized Projects

Remote Connections

Exercise
1. Create a synchronized project

 Your login information and source directory will be
provided by the tutorial instructor

2. Observe that the project files are copied to your
workspace

3. Open a file in an editor, add a comment, and
save the file

4. Observe that the file is synchronized when you
save the file
 Watch lower-right status area; confirm on host system

Synchronized Projects Sync-27

Optional Exercise
1. Modify Sync filters to not bring the *.o files and

your executable back from the remote host
 Rebuild and confirm the files don’t get copied

Synchronized Projects Sync-28

Editor Features
Objective

 Learn about Eclipse editor features
 Contents

 Saving
 Editor markers
 Setting up include paths
 Code analysis
 Content assistance and templates

Editor Features Editor-0

Editors
 An editor for a resource (e.g. a file) opens when you

double-click on a resource
 The type of editor depends on the type of the resource

 .c files are opened with the
C/C++ editor by default

 You can use Open With to
use another editor

 In this case the default
editor is fine (double-click)

 Some editors do not just edit raw text
 When an editor opens on a resource, it stays open across

different perspectives
 An active editor contains menus and toolbars specific to that

editor

Editor Features Editor-1

Saving File in Editor

When you change a file in the editor,
an asterisk on the editor’s title bar
indicates unsaved changes

 Save the changes by using
Command/Ctrl-S or File>Save

 Undo last change using Command/Ctrl Z

Editor Features Editor-2

Editor and Outline View
 Double-click on

source file
 Editor will open in

main view

 Outline view is
shown for file in
editor

 Console shows
results of build,
local runs, etc.

Editor Features Editor-3

Source Code Editors & Markers

 A source code editor is a
special type of editor for
manipulating source
code

 Language features are
highlighted

 Marker bars for showing
 Breakpoints
 Errors/warnings
 Task Tags, Bookmarks

 Location bar for
navigating to interesting
features in the entire file Icons:

Editor Features Editor-4

Remote Include Paths
 In order for editor and build features to work

properly, Eclipse needs to know where your
include files are located
 The build environment on the remote host knows

your include files etc., and will work fine without
additional information

 But if we tell Eclipse also,
 Then indexing, search, completion, etc. will know

where things are

 Two methods: (A) manual and (B) discover

Editor-5Editor Features

A B

Set Include Paths manually

Editor-6Editor Features

 Open Project Properties
 Expand C/C++ General
 Select Preprocessor Include

Paths
 Click GNU C, then CDT User

Setting Entries, then click
Add…

 In upper right, select
File System Path in pulldown

 Check Contains System
Headers

 A UNC-style path specifies
//<connection>/<path>

 Enter Path
//gordon/opt/openmpi/gnu/ib/incl
ude

 Select OK

A

Include Paths con’t

 After adding include directory, it should
appear in the list

 Add second value:

//gordon/usr/include
... the same way

You should have
two entries:

Editor-7Editor Features

A

Include Paths con’t (3)

 Select OK
 The C/C++ Indexer should run

 Lower right status area indicates it

 If not force it via Project Properties>Index>Rebuild

Editor-8Editor Features

A

Set Include Paths
automatically

1. Project Properties > C/C++ General > Preprocessor Include
Paths, Macros etc.

2. Select the "Providers" tab
3. Click on the checkbox for "Sync GCC Builtin Compiler Settings”
4. Open the window wider. You'll see a text box with "Command

to get compiler specs"
 It will read
 ${COMMAND} -E -P -v -dD ${INPUTS}
 Change ${COMMAND} to mpicc, and click OK

5. Rebuild the index
 Right click on project, Index > Rebuild

1. mpi.h and its symbols should now be resolved.

Editor-9Editor Features

B

Set include paths automatically (con’t)

Editor-10Editor Features

B

Set include paths automatically (con’t)

Editor-11Editor Features

B

 You may see in lower right:

When it’s done, Rebuild Index (Rightmouse on
project)

 The C/C++ Indexer should run
 Lower right status area indicates it

Code Analysis (Codan)
 If you see bug icons in the editor marker bar, they

are likely suggestions from Codan
 If include files are set correctly, they should not appear.

 Code checkers can flag possible errors, even if
code is technically correct

 To turn them off, use Preferences
Window > Preferences or Mac: Eclipse > Preferences

C/C++ > Code Analysis
and uncheck
all problems

 Select OK to
close
Preferences If icons don’t disappear:

Right mouse on Project >
Run C/C++ Code Analysis
You can also enable/disable
this per project in Project
PropertiesUncheck allEditor Features Editor-12

Line Numbers

 Text editors can show line numbers in the
left column

 To turn on line
numbering:
 Right-mouse click in

the editor marker bar
(at editor left edge)

 Click on Show Line
Numbers

Editor Features Editor-13

 On demand hyperlink
 In main.c line 135:
 Hold down Command/Ctrl key

e.g. on call to initialise
 Click on initialise to navigate

to its definition in the header file
(Exact key combination
depends on your OS)

 E.g. Command/Ctrl and click on
initialise

 Open declaration
 Right-click and select Open

Declaration will also open the
file in which the element is
declared

 E.g. in main.c line 29 right-click
on decs.h and select Open
Declaration

Navigating to Other Files

Note: may need to left-click
before right-click worksEditor Features Editor-14

 Note: remote includes must be set up
correctly for this to work

 On demand hyperlink
 In main.c line 73:
 Ctrl-click on fprintf
 stdio.h on remote system opens

 Open declaration (or F3)
 In main.c, right-click and select

Open Declaration e.g on <stdio.h>
 File from remote system is opened.

 Hover over editor name tab to see remote
location.

Navigating to Remote Files

Editor Features Editor-15

Content Assist & Templates
 Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
 Select desired completion value with cursor or mouse

Hit ctrl-space again
for code templates  Code Templates: type

‘for’ and Ctrl-space

More info on code templates later
Editor Features Editor-16

Hover Help

 Hover the mouse over a program element in
the source file to see additional information

Editor-17Editor Features

Inactive code

 Inactive code will appear grayed out in the
CDT editor

Editor-18Editor Features

Exercise
1. Open an editor by double clicking on a source file in the

Project Explorer
2. Use the Outline View to navigate to a different line in

the editor
3. Back in main.c, turn on line numbering
4. In main.c, ctrl-click on line 99, master_packet, should

navigate to its definition in the file
5. In worker.c, line 132, hover over variable p to see info

6. Try the exercises at the end of the “Basics” section, if you
haven’t already, since you now have some project/source
files to play with.

Editor Features Editor-19

Optional Exercise
1. Type “for”, then activate content assist

 Select the for loop with temporary variable template, insert it,
then modify the template variable

 Surround the code you just inserted with “#if 0” and “#endif” and
observe that it is marked as inactive

 Save the file

2. What do these keys do in the editor?
 Ctrl+L; Ctrl+Shift+P (do it near some brackets)
 Ctrl+Shift+/;
 Ctrl+Shift+Y and Ctrl+Shift+X (do it on a word or variable name

e.g.)
 Alt+Down; Alt+Up

3. To make sure you didn’t do any damage,
 Select any source files you changed and do rightmouse > replace with ..

 (if you made project from CVS) ….Latest from HEAD
 (If you made project from remote files) … Local History ….

 Observe that your changes are gone.

Editor Features Editor-20

MPI Programming
Objective

 Learn about MPI features for your source files
 Contents

 Using Editor features for MPI
MPI Help features
 Finding MPI Artifacts
MPI New Project Wizards
MPI Barrier Analysis

MPI Programming MPI-0

MPI-Specific Features

 PTP’s Parallel Language Development Tools (PLDT) has
several features specifically for developing MPI code
 Show MPI Artifacts
 Code completion / Content Assist
 Context Sensitive Help for MPI
 Hover Help
MPI Templates in the editor
MPI Barrier Analysis

 PLDT has similar features for OpenMP, UPC,
OpenSHMEM, OpenACC

MPI-1MPI Programming

 In Project Explorer, select a project, folder, or a
single source file
 The analysis will be run on the selected resource(s)

MPI-2

Show MPI Artifacts

-2

 Run the analysis by
clicking on drop-
down menu next to
the analysis button

 Select Show MPI
Artifacts

MPI Programming

-3

MPI Artifact View
 Markers indicate the

location of artifacts in
editor

 The MPI Artifact View
lists the type and location
of each artifact

 Navigate to source code
line by double-clicking on
the artifact

 Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

 Click on column headings
to sort

 Remove markers via

MPI-3MPI Programming

MPI-4

MPI Editor Features
 Code completion will show all

the possible MPI keyword
completions

 Enter the start of a keyword
then press <ctrl-space>

-4

 Hover over MPI API
 Displays the function

prototype and a
description

MPI Programming

MPI-5

Context Sensitive Help
 Click mouse, then press help

key when the cursor is within a
function name
 Windows: F1 key
 Linux: ctrl-F1 key
 MacOS X: Help key or

HelpDynamic Help
 A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

 Click on the function name to
see more information

 Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

-5

Some special
info has been
added for MPI
APIs

MPI Programming

MPI-6

MPI Templates

 Example:
MPI send-receive

 Enter:
mpisr <ctrl-space>

 Expands to a send-receive
pattern

 Highlighted variable names
can all be changed at once

 Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates
Extend to other common patterns

-6

Allows quick entry of common patterns in MPI programming

MPI Programming

MPI Barrier Analysis
 Verify barrier

synchronization in C/MPI
programs

 For verified programs, lists
barrier statements that
synchronize together
(match)

 For synchronization
errors, reports counter
example that illustrates
and explains the error

MPI-7

Local files only

MPI Programming

MPI Barrier Analysis (2)

MPI-8

Run the Analysis:
 In the Project

Explorer, select the
project (or directory,
or file) to analyze

 Select the MPI
Barrier Analysis
action in the pull-
down menu

MPI Programming

MPI Barrier Analysis (3)

 No Barrier Errors are found (no pop-up
indicating error)

 Two barriers are found

MPI-9MPI Programming

MPI Barrier Analysis Views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

MPI-10MPI Programming

Barrier Errors

 Let’s cause a barrier mismatch error
Open worker.c in the editor by double-clicking

on it in Project Explorer
 At about line 125,

enter a barrier:
 Type MPI_B
 Hit Ctl-space
 Select MPI_Barrier
 Add communicator

arg MPI_COMM_WORLD and closing semicolon

MPI-11MPI Programming

Barrier Errors (2)

 Save the file
 Ctl-S (Mac Command-S) or File > Save
 Tab should lose asterisk indicating file saved

 Run barrier analysis on shallow project again
 Select shallow

project in Project
Explorer first

MPI-12MPI Programming

Barrier Errors (3)

 Barrier Error is found
 Hit OK to dismiss dialog

 Code diverges on line 87
One path has 2 barriers, other has 1

MPI-13

Double-click
on a row in
Barrier Errors
view to find
the line it
references in
the code

MPI Programming

Fix Barrier Error

 Fix the Barrier Error
before continuing

 Double-click on the
barrier in worker.c
to quickly navigate
to it

 Remove the line and save the file
 Re-run the barrier analysis to check that it has

been fixed

MPI-14MPI Programming

Remove Barrier Markers

 Run Barrier Analysis again to remove the error
 Remove the Barrier Markers via the “X” in one

of the MPI Barrier views

MPI-15MPI Programming

MPI New Project Wizards

Quick way to make a simple MPI project
 File > New > C Project

 “MPI Hello World”
is good for trying out
Eclipse for MPI

MPI-16MPI Programming

MPI New Project Wizards (2)

 Next> and fill in (optional) Basic Settings

MPI-17

Next> and fill in MPI Project
Settings

Include path set in MPI
Preferences can be added to
project

MPI Programming

MPI New Project Wizards (3)

 Select Finish and “MPI Hello World” project
is created

MPI-18MPI Programming

MPI Preferences

 Settings for MPI New Project wizards
MPI Include paths, if set in MPI

Preferences, are added in MPI New
Project Wizard

MPI-19MPI Programming

Exercise

1. Find MPI artifacts in ‘shallow’ project
 Locate all the MPI communication (send/receive)

calls
2. Use content assist to add an api call
 E.g., Type MPI_S, hit ctl-space

3. Use hover help
4. Use a template to add an MPI code template
 On a new line, type mpisr and ctl-space…

MPI-20MPI Programming

Optional Exercise

1. Insert an MPI_Barrier function call into one of
your source files using content assist
 E.g. Line 125 of worker.c

2. Save the file
3. Run Barrier Analysis on the project
4. Locate the source of the barrier error and

remove the statement
5. Re-run barrier analysis to observe that the

problem has been fixed

MPI-21MPI Programming

Building a Project

Objective
 Learn how to build an MPI program on a remote

system
 Contents

 How to change build settings
 How to start a build and view build output
 How to clean and rebuild a project
 How to do environment configuration with modules
 How to create build targets

Build-0Building a Project

Build Configurations
 A build configuration provides the

necessary information to build the
project

 The build configuration
information is specified in the
project properties

 Projects can have multiple build
configurations, each configuration
specifies a different set of options
for a build

 Open the properties by right-
clicking on the project name in the
Project Explorer view and
selecting Properties (bottom of
the context menu list)

Build-1Building a Project

Note: Fortran projects are a superset of
C/C++ projects, so they have properties
for both

Build Properties (1)

Build-2Building a Project

 C/C++ Build
 Main properties page
 Configure the build command
 Default is “make” but this can be changed to

anything
 Build Variables

 Create/manage variables that can be used in other
build configuration pages

 Environment
 Modify/add environment variables passed to build

 Logging
 Enable/disable build logging

Build Properties (2)

Build-3Building a Project

 Settings
 Binary parser selection (used to display binaries in

Project Explorer)
 Error parser selection (used to parse the output from

compiler commands)
 Tool Chain settings (managed projects only)

 Tool Chain Editor
 Allows the tools in a particular tool chain to be

modified
 XL C/C++ Compiler

 Compiler settings for XL C/C++ compilers (if installed)

 C/C++ General/Preprocessor Include Paths…
 Set include paths here

Selecting Build Configuration

 Multiple build configurations may be available
 Synchronized projects will usually have a remote and a local build configuration
 Build configurations for different architectures

 The active build configuration will be used when the build button
is selected

 The Build Configurations project context menu can be used to
change the active configuration
 Right click on project, then select the build configuration from the Build

Configurations > Set Active menu

Build-4Building a Project

Building Synchronized Projects
 When the build button is selected, the

“active” build configuration will be built
on the remote system specified by the
“active” synchronize configuration

 The build and synchronize configurations
are independent
 It is possible to change which build

configuration is active, but make sure this
makes sense on the remote system specified in
the synchronize configuration

 Right mouse on Project,
Synchronize > Manage…

 A build configuration can be associated
with a synchronize configuration, so that
it is automatically selected when the
synchronize configuration is changed

Build-5Build

Configuring the Build Environment
 If the remote system has an

environment system (such as
Modules) installed, a custom
set of modules can be
configured for building C/C++
projects

 In the Manage Synchronize
Configurations dialog, select
the configuration you wish to
change

 Check Use an environment
management system to
customize the remote build
environment

Build-6Building a Project

Build Environment (2)
 Select a module from the

Available Modules list and
click the Add-> button to add
them to the Selected
Modules list

 Use the <-Remove button to
remove modules from the
Selected Modules list

 Use the Filter list field to
quickly find modules with a
given name

 Use the Up and Down
buttons to change the order of
the Selected Modules

 Click Select Defaults to load
only those modules that are
present in a new login shell

Build-7Building a Project

We’ll do this for tutorial in a few slides…

Build Environment (3)

 When you build the project, Eclipse will
 Open a new Bash login shell
 Execute module purge
 Execute module load for each selected module
 Run make

 Module commands are displayed in the Console view during build
 Beware of modules that must be loaded in a particular order, or

that contain common paths like /bin or /usr/bin

Build-8Building a Project

Build Environment (4)
 For this tutorial, we

want to use gcc and
Open MPI

 To get to this dialog: Right
mouse on Project,
Synchronize > Manage…

 Navigate to gnu in
Available Modules
and select Add ->

 Navigate to
openmpi_ib and
select Add ->

 Assure the
order matches this
 If not, use Up/Down

buttons

Build-9Building a Project

Start with original‘shallow’

 Start with original ‘shallow’ code:
 Project checked out from git:
Right mouse on project,

Replace With > HEAD Revision

Also see Compare With …
Other project:
Right mouse on project,

Restore from local history – finds deleted files
Right mouse on file, Compare With

or Replace With

Build-10Building a Project

Starting the Build
 Select the project in Project Explorer

 Click on the hammer button in toolbar to run a build
using the active build configuration

 By default, the Build Configuration assumes there is a
Makefile (or makefile) for the project

Build-11Building a Project

 Build output will be visible in console

Viewing the Build Output

Build-12Building a Project

Build Problems

 Build problems will be
shown in a variety of
ways
 Marker on file
 Marker on editor line
 Line is highlighted
 Marker on overview ruler
 Listed in the Problems

view

 Double-click on line in
Problems view to go
to location of error in
the editor

Building a Project Build-13

Forcing a Rebuild
 If no changes have been made,

make doesn’t think a build is needed
e.g. if you only change the Makefile

 In Project Explorer, right click on
project; Select Clean Project

 Build console will display results

 Rebuild project by clicking on
build button again

Building a Project Build-14

Forcing a Resync
 Project should resync with remote

system when things change
 Sometimes you may need to

do it explicitly
 Right mouse on project,

Synchronize>Sync Active Now

 Status area in lower right shows
when Synchronization occurs

Building a Project Build-15

 By default
 The build button will run “make all”
 Cleaning a project will run “make clean”

 Sometimes, other build targets are
required

 Open Make Target view
 Select project and click on New

Make Target button
 Enter new target name
 Modify build command if desired
 New target will appear in view
 Double click on target to activate

Creating Make Targets

Build-16Building a Project

Build-17

Exercise

1. Start with your ‘shallow’ project
2. Build the project
3. Edit a source file and introduce a compile error

 In main.c, line 97, change ‘;’ to ‘:’
 Save, rebuild, and watch the Console view
 Use the Problems view to locate the error
 Locate the error in the source code by double

clicking on the error in the Problems view
 Fix the error

4. Rebuild the project and verify there are no build errors

Building a Project

Build-18

Optional Exercise

1. Open the Makefile in Eclipse. Note the line starting with
“tags:” – this defines a make target named tags.

2. Open the Outline view while the Makefile is open. What icon
is used to denote make targets in the Outline?

3. Right-click the tags entry in the Outline view. Add a Make
Target for tags.

4. Open the Make Target view, and build the tags target.

5. Rename Makefile to Makefile.mk
6. Attempt to build the project; it will fail
7. In the project properties (under the C/C++ Build category),

change the build command to: make –f Makefile.mk
8. Build the project; it should succeed

Building a Project

Running an Application
Objective

 Learn how to run an MPI program on a remote system

 Contents
 Creating a run configuration
 Configuring the application run
Monitoring the system and jobs
 Controlling jobs
Obtaining job output

Running an Application Run-1

Run-2

 Open the run configuration
dialog Run>Run
Configurations…

 Select Parallel Application
 Select the New button

Or, just double-click on
Parallel Application
to create a new one

Creating a Run Configuration

Note: We use “Launch Configuration” as a generic term to refer to either a
“Run Configuration” or a “Debug Configuration”, which is used for debugging.

Running an Application

Run-3

Set Run Configuration Name
 Enter a name for this run configuration

 E.g. “shallow”

 This allows you to easily re-run the
same application

 If the “shallow” project was selected
when the dialog was opened, its name
will be automatically entered

-3Running an Application

Run-4

Configuring the Target System
 In Resources tab, select a

Target System Configuration
that corresponds to your target
system
 Use Generic Torque Batch

 Target system configurations can
be generic or can be specific to a
particular system

 Use the specific configuration if
available, or the generic
configuration that most closely
matches your system

 You can type text in the box to
filter the configurations in the
list

-4Running an Application

Run-5

Configure the Connection
 Choose a connection to

use to communicate with
the target system

 If no connection has been
configured, click on the
New button to create a
new one
 Fill in connection information,

then click ok

 The new connection
should appear in the
dropdown list

 Select the connection you
already have to
gordon.sdsc.edu

 Select toggle if you don’t
want to see popup again

-5Running an Application

Run-6

Resources Tab
 The content of the

Resources tab will vary
depending on the target
system configuration
selected

 This example shows the
TORQUE configuration

 For TORQUE, you will
normally need to select
the Queue and the
Number of nodes

 For parallel jobs, choose
the MPI Command and
the MPI Number of
Processes

-6Running an Application

For this tutorial:
• Queue: normal
• Number of nodes: 1:ppn=5
• MPI Command: mpirun
• MPI Number of Processes: 5
• Leave other fields alone

Run-7

Configure Environment Modules
 Click on the Modules to Load: Configure… button
 Check the Use an environment management system to

customize the remote build environment box if it is not
already checked

 Select the required modules and click Add -> (you can
either select one at a time, or all at once)

 Click ok

-7Running an Application

For this tutorial, use the
following modules:
• gnu
• gnubase
• openmpi_ib

Run-8

Viewing the Job Script
 Some target

configurations will
provide a View Script
button

 Click on this to view the
job script that will be
submitted to the job
scheduler

 Batch scheduler
configurations should
also provide a means of
importing a batch script

-8Running an Application

Run-9

Application Tab

 Select the Application tab
 Choose the Application

program by clicking the
Browse button and locating
the executable on the remote
machine
 Use the same “shallow”

executable
 Select Display output from

all processes in a console
view

-9Running an Application

Run-10

Arguments Tab (Optional)
 The Arguments tab lets

you supply command-line
arguments to the
application

 You can also change the
default working directory
when the application
executes

-10Running an Application

Run-11

Environment Tab (Optional)
 The Environment tab

lets you set environment
variables that are passed
to the job submission
command

 This is independent of the
Environment Management
(module/softenv) support
described on previous
slide

-11Running an Application

Run-12

Synchronize Tab (Optional)
 The Synchronize tab lets

you specify
upload/download rules
that are execute prior to,
and after the job
execution

 Click on the New
upload/download rule
buttons to define rules

 The rule defines which file
will be
uploaded/downloaded and
where it will be put

 Can be used in
conjunction with program
arguments to supply input
data to the application

-12Running an Application

Run-13

Common Tab (Optional)
 The Common tab is

available for most launch
configuration types (not
just Parallel Application)

 Allows the launch
configuration to be
exported to an external
file

 Can add the launch
configuration to the
favorites menu, which is
available on the main
Eclipse toolbar

 Select Run to launch
the job

-13Running an Application

Run

 Select Run to launch the job
 You may be asked to switch to the System

Monitoring Perspective

 Select Remember my decision so you
won’t be asked again

 Select Yes to switch and launch the job

Run-14Building and Running

System Monitoring Perspective
 System view

 Jobs running
on system

 Active jobs

 Inactive jobs

 Messages

 Console

Run-15Running an Application
Scroll to see more

Moving views

 The System Monitoring Perspective overlaps
the Active Jobs and Inactive Jobs views

 To split them apart and see both at once,
drag the tab for the Inactive Jobs view to
the lower half of its area, and let go of mouse

Run-16Building and Running

Run-17

System Monitoring

 System view, with
abstraction of system
configuration

 Hold mouse button
down on a job in
Active Jobs view to
see where it is
running in System
view

 Hover over node in
System view to see
job running on node
in Active Jobs view

-17

One node with
16 cores

Running an Application

Run-18

 Job initially appears in
Inactive Jobs view

 Moves to the Active Jobs
view when execution
begings

 Returns to Inactive Jobs
view on completion

 Status refreshes
automatically every 60 sec

 Can force refresh with menu

-18Running an Application

Job Monitoring

Run-19

 Right click on a job to open
context menu

 Actions will be enabled IFF
 The job belongs to you
 The action is available on the

target system
 The job is in the correct state for

the action

 When job has COMPLETED, it
will remain in the Inactive
Jobs view

-19Running an Application

Controlling Jobs

Run-20

 After status changes to
COMPLETED, the output is
available
 Right-click on the job
 Select Get Job Output to display

output sent to standard output
 Select Get Job Error to retrieve

output sent to standard error

 Output/Error info shows in
Console View

 Jobs can be removed by
selecting Remove Job Entry

-20Running an Application

Obtaining Job Output

Add a Monitor

 You can monitor other systems too
 In Monitors view, select the ‘+’ button to

add a monitor

 Choose monitor type and connection;
create a new connection if necessary

Run-21Running an Application

Double click
new monitor
to start

Run-22

Exercise

1. Start with your ‘shallow’ project
2. Create a run configuration
3. Complete the Resources tab
4. Select the executable in the Application tab
5. Submit the job
6. Check the job is visible in the Inactive Jobs view,

moves to the Active Jobs view when it starts running
(although it may be too quick to show up there), then
moves back to the Inactive Jobs view when completed

7. View the job output
8. Remove the job from the Inactive Jobs view

Running an Application

Tutorial Wrap-up

Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

WrapUp-0Tutorial Wrap Up

Useful Eclipse Tools

 Linux Tools (autotools, valgrind, Oprofile, Gprof)
 http://eclipse.org/linuxtools (part of Parallel package)

 Python
 http://pydev.org

 Ruby
 http://www.aptana.com/products/radrails

 Perl
 http://www.epic-ide.org

 VI bindings
 Vrapper (open source) - http://vrapper.sourceforge.net
 viPlugin (commercial) - http://www.viplugin.com

Tutorial Wrap Up WrapUp-1

http://eclipse.org/linuxtools
http://www.epic-ide.org

Online Information
 Information about PTP

 PTP online help
http://help.eclipse.org

Main web site for downloads, documentation, etc.
http://eclipse.org/ptp

Wiki for designs, planning, meetings, etc.
http://wiki.eclipse.org/PTP

 Information about Photran
Main web site for downloads, documentation, etc.

http://eclipse.org/photran

Tutorial Wrap Up WrapUp-2

Mailing Lists

 User Mailing Lists
 PTP

 http://dev.eclipse.org/mailman/listinfo/ptp-user
 Photran

 http://dev.eclipse.org/mailman/listinfo/photran
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

 Developer Mailing Lists
 Developer discussions - higher volume

 http://dev.eclipse.org/mailman/listinfo/ptp-dev

Tutorial Wrap Up WrapUp-3

http://dev.eclipse.org/mailman/listinfo/ptp-dev

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki

 http://wiki.eclipse.org/PTP
 Join the mailing lists
 Attend the monthly developer meetings

 Conf Call Monthly: Second Tuesday, 1:00 pm ET
 Details on the PTP wiki

Tutorial Wrap Up WrapUp-4

PTP Tutorial Wrap-Up

 Your feedback is valuable!

Thanks for attending
We hope you found it useful

Tutorial Wrap Up WrapUp-5

	ptp-00-xsede15
	Slide Number 1
	Slide Number 2
	Slide Number 3

	ptp-01-install
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	ptp-02-intro
	Introduction
	What is Eclipse?
	Eclipse Features
	Parallel Tools Platform (PTP)
	Eclipse PTP Family of Tools
	How Eclipse is Used

	ptp-03-01-basics
	Eclipse Basics
	Eclipse Basics
	Perspectives
	Switching Perspectives
	Which Perspective?
	Views
	Stacked Views
	Expand a View
	Help
	Eclipse Preferences
	Preferences Example
	Exercise
	Optional Exercise�Best performed after learning about projects, CVS, and editors

	ptp-03-02a-syncProj
	Creating a Synchronized Project
	Project Location
	Synchronized Projects
	Revision Control Systems�(Source Code Repositories)
	Synchronized Project Creation
	C, C++, and Fortran Projects�Build types
	Create Synchronized project on the local machine at the same time.��Two steps:
	Clone the git repo
	Specify remote git repo location
	Finish git cloning
	Import project from cloned repo
	Create new project with wizard
	New Project Wizard�
	New Synchronized Project Wizard
	Local and remote directories
	Creating a Connection
	Specifying the remote directory
	Project Type & Toolchain
	Project successfully created
	Synchronized Project
	Synchronize Filters
	Synchronize Filter Dialog
	Synchronized Project Properties
	Forcing a Resync
	Remote Terminal
	Changing Remote Connection Information
	Remote Connections
	Exercise
	Optional Exercise

	ptp-03-03-editor
	Editor Features
	Editors
	Saving File in Editor
	Editor and Outline View
	Source Code Editors & Markers
	Remote Include Paths
	Set Include Paths manually
	Include Paths con’t
	Include Paths con’t (3)
	Set Include Paths �automatically
	Set include paths automatically (con’t)
	Set include paths automatically (con’t)
	Code Analysis (Codan)
	Line Numbers
	Navigating to Other Files
	Navigating to Remote Files
	Content Assist & Templates
	Hover Help
	Inactive code
	Exercise
	Optional Exercise

	ptp-03-04-mpi
	MPI Programming
	MPI-Specific Features
	Show MPI Artifacts
	MPI Artifact View
	MPI Editor Features
	Context Sensitive Help
	MPI Templates
	MPI Barrier Analysis
	MPI Barrier Analysis (2)
	MPI Barrier Analysis (3)
	MPI Barrier Analysis Views
	Barrier Errors
	Barrier Errors (2)
	Barrier Errors (3)
	Fix Barrier Error
	Remove Barrier Markers
	MPI New Project Wizards
	MPI New Project Wizards (2)
	MPI New Project Wizards (3)
	MPI Preferences
	Exercise
	Optional Exercise

	ptp-04-01-build
	Building a Project
	Build Configurations
	Build Properties (1)
	Build Properties (2)
	Selecting Build Configuration
	Building Synchronized Projects
	Configuring the Build Environment
	Build Environment (2)
	Build Environment (3)
	Build Environment (4)
	Start with original‘shallow’
	Starting the Build
	Viewing the Build Output
	Build Problems
	Forcing a Rebuild
	Forcing a Resync
	Creating Make Targets
	Exercise
	Optional Exercise

	ptp-04-02-run
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

	ptp-20-wrapup
	Tutorial Wrap-up
	Useful Eclipse Tools
	Online Information
	Mailing Lists
	Getting Involved
	PTP Tutorial Wrap-Up

