
OCL Compiler for EMF

Miguel Garcia A. Jibran Shidqie

Institute for Software Systems (STS)
Hamburg University of Technology (TUHH), 21073 Hamburg, Germany

http://www.sts.tu-harburg.de/˜mi.garcia

Abstract: The Eclipse infrastructure for modeling is based on EMF, with support for OCL 2.0 provided by the Model
Development Tools (MDT) project. The combined expressive power of Ecore + OCL allows capturing a sizable
amount of development requirements in a declarative manner: (a) data modeling aspects can be expressed as an
Ecore-based schema further constrained by OCL invariants; (b) a number of functional requirements can be specified
as operation pre- and postconditions, together with side-effects-free queries. The OCL compiler reported in this
paper extends the code generation process of EMF by performing a translation from OCL types and expressions into
Java types and statements, increasing productivity and quality measures of a Model-Driven Software Development
(MDSD) process. The generated code can be directly used as the Model component in an MVC architecture (for
example, as part of a graphical editor generated with Eclipse GMF).

1 Introduction

The operation of a compiler [2] can be broken down into phases: (1) lexical analysis; (2) parsing a stream of tokens
into a language-independent Concrete Syntax Tree (CST); (3) transforming such CST into a language-specific Abstract
Syntax Tree (AST). During this phase, usages are resolved to their declarations, and symbol tables are built for later
use in succeeding phases, as for example during (4) semantic analysis, where the static semantics (also called Well-
Formedness Rules, WFRs) are checked, i.e. the conditions that a program should satisfy beyond those captured
by the grammar alone. For example, a program may be syntactically valid yet not pass type checking, with type
checking being a case in point of well-formedness. For input that has progressed this far, the remaining phases can
generate executable code: (5) translation to intermediate code, (6) detection of unreachable blocks, (7) optimization
(e.g. constant propagation) based on control and dataflow analyses, (8) detailed decisions of instruction selection and
register allocation.

In our setting, things are a bit different. The output language is a high-level language (Java 5), moreover constrained
to a number of code idioms. The particular patterns to generate partly depend on user preferences. For example,
either (a) POJO-style (Plain Old Java Objects) or (b) EMF-enabled style can be chosen. The latter is suited whenever
EMF services will be accessed at runtime (reflection, dynamic object model, interaction with Eclipse editors). As an
example of (b), method signatures generated for OCL invariants follow the contract expected by the EMF Validator
Framework. Similarly, there are code idioms resulting from OCL itself (most notably, the implicit source argument
resulting from OCL’s compact syntax).

Regarding the input languages, the basic activities of parsing, AST building, and well-formedness checking for Ecore
+ OCL are carried out by reusing building blocks provided by the Eclipse Modeling infrastructure [7]. EMF support for
parametric polymorphism (“Generics” [8]) is in line with the strongly-typed nature of OCL and makes for a seamless
transition from OCL collection types to those from the java.util package.

The structure of this paper is as follows. Sec. 2 provides details about the core of our contribution, i.e. the compi-
lation algorithm as a whole, which comprises a conversion from OCL types to Java counterparts (Sec. 2.2) and the
translation of OCL constructs proper (Sec. 2.3). Implementation-specific aspects have been gathered for the interested
reader in Sec. 2.4. The techniques for OCL translation presented here can be applied to a variety of target languages
(e.g., database query languages). Sec. 3 discusses some of these possibilities. The integration of compiled code with
other artifacts produced in an MDSD toolchain is the focus of Sec. 4, as well as performance evaluation. On average,

http://www.sts.tu-harburg.de/~mi.garcia

generated code exhibits a 2x speedup over its interpreted counterpart. Sec. 5 discusses related work and offers our con-
clusions. Familiarity with OCL syntax is necessary to follow the discussion in Sec. 2. The source code of the compiler
is available under the Eclipse Public License (EPL) v1.0 and can be downloaded from CVS-repository-TODO.

2 Compilation Phases

2.1 Information initially available to the compiler

Figure 1: Visual depiction using OCLASTView [7] of the AST for the invariant self.participants->forAll(c1,c2 |
c1<>c2 implies c1.name<>c2.name)

The ASTs prepared by MDT OCL encode not only structural aspects of OCL expressions (operators, operands, prece-
dence) but also reveal the statically computed types for each sub-expression, down to the leaf nodes (literals, read
access to variables). Not all of this type information has been explicitly stated by the developer, most of it is inferred
from the typing rules of OCL, the types of arguments, and the involved operation. Less frequently, a type declaration
itself may be implicit and the resulting type has no user-visible name (this is the case for tuple literals and for implicit
iterator variables in loop expressions).

The translation algorithm comprises (a) types conversion and (b) expressions translation. The latter involves a struc-
tural mapping that considers one node at a time of the input OCL AST, and produces a Java counterpart. This transla-
tion has to abide by the type conversion, i.e. the Java type of an output expression has to conform to that specified by
the rules elaborated in Sec. 2.2. Translation (b) requires information available locally at each input node. Such nodes
stand for a function application (internal node) or for a read access (leaf node). As explained in detail in Sec. 2.3,
the translation of a function application is constructive: provided that the arguments have already been translated, the
output for the function application as a whole will be well-formed.

Regarding the possible OCL constructs, Figure 4 depicts the relevant fragment of the OCL metamodel [14], i.e. the
classes whose instances are nodes in an AST (for more details, see [7]). For illustration, one such AST is shown in
Figure 1, depicting the static dataflow of an OCL expression. For simple expressions, such AST depiction has the same

shape as the dynamic dataflow (i.e., the tree of call stack activations). For OCL expressions involving recursion or
loops, the dynamic dataflow is data-dependent and a visual representation would involve unwinding the call hierarchy
for a particular execution trace.

The OCL Standard does not specify the order in which AST building should take place, but it cannot be arbitrary: def
statements can be used to add: (a) attributes, (b) references and (c) operations to a class model specified in Ecore. In
order for other OCL expressions to parse correctly (as they may contain usages of these newly added model elements),
the declaration part of all def statements is processed first, affecting an in-memory copy of the original input model.
Thereafter, ASTs are built for the initialization part of the def statements and for the remaining OCL statements. An
example of mutual forward references occurring in the initializers of def statements is depicted in Figure 2.

context A
def dA: sa : String = refToB.sb

context B
def dB: sb : String = refToA.sa

Figure 2: Mutual forward references in the initializers of def statements

2.2 Types Conversion

Figure 3: Type information in MDT OCL

The declared types appearing in a particular Ecore + OCL specification are a subset of the universe of types resulting
from applying OCL type construction operators to the union of the OCL built-in types and those in the user-specified
class model. The subtype relationship over the types universe is a partial order. The types conversion implemented
by our compiler must map this graph G into an isomorphic graph H (whose nodes represent Java 5 types). This
isomorphic mapping is a bijection f between the vertices of G and H such that any two vertices u and v from G
are adjacent if and only if f(u) and f(v) are adjacent in H . This ensures that, if two nodes in the target graph are
connected, such statement about subtyping is valid under the subtyping relationship of Java 5 (§4.10 in [10]). Type
formation in OCL is summarized in Figure 3 and covered in Sec. 8.2 of the OCL 2.0 Standard [14]. In fact, the OCL

→ Java types conversion can be made more concise by translating into Ecore types [8] (which are shorthands for
the Java 5 types that will appear in the code generated by the EMF CodeGen component). The algorithm to achieve
this conversion appears on Tables 1 and 2, as pairs of LHS → RHS transformations from OCL types into Ecore
types. This algorithm is applied to instances of Ecore’s ETypedElement (attributes and references in classes, formal
parameters and return type in operations) after ASTs have been built as discussed at the end of Sec. 2.1.

OCL type Ecore counterpart

(wrapped inside an EDataType<T> with instanceClassName as below)
Collection(T) java.util.Collection<? extends T>

Sequence(T) java.util.ArrayList<? extends T>

Set(T) java.util.HashSet<? extends T>

OrderedSet(T) java.util.LinkedHashSet<? extends T>

Bag(T) org.eclipse.ocl.util.Bag<? extends T>

Boolean, Integer EBoolean, EInt
String, Real EString, EDouble

TupleType A dedicated EClass is added to the in-memory copy of the input model, with
structural features standing for the tuple’s fields

VoidType
All OCL-defined expressions return some value, including body statements defin-
ing EOperations. The Java counterpart of VoidType is a void return type for a
method, but again, such methods cannot be defined with OCL.

MessageType Not handled by our compiler, MessageTypes denote method invocations, which are
not reified in Java.

ElementType
This metaclass appears in the OCL standard just to introduce vocabulary for later
use in English sentences. There is no “ElementType” as such, the item type of a
collection must be one of the types defined above.

Table 1: Types present in OCL since version 1.0

OCL type Ecore counterpart

AnyType EObject

InvalidType
As in Java, there is no name in Ecore for the type whose only allowed value is null.
Whenever an OCL expression would evaluate to InvalidType, the Java counterpart
will compute null.

TypeType

“TypeType” appears in the OCL spec only in diagrams (in particular, no defini-
tion for it is given). Its apparent intent, type reification, is already handled by
the Ecore metamodel and the above definitions, which suffice for ASTs involving
oclIsTypeOf(), oclIsKindOf(), and oclAsType().

Table 2: Types added to OCL 2.0

2.3 Expressions Translation

The internal nodes in an OCL AST stand for the application of a function to its arguments. The OCL constructs sub-
classing CallExp receive, besides the argument list, an additional source expression as implicit argument. In the exam-
ple shown in Figure 1, self.participants->forAll(c1,c2 | c1<>c2 implies c1.name<>c2.name), the
source expression of the forAll is self.participants. In general, the Java code generated to compute the func-
tion application could assume that the values of arguments are available in local variables. This recursive pattern fits

perfectly the visit order that can be followed by subclassing org.eclipse.ocl.utilities.AbstractVisitor.
To enforce the pattern, each method in the compilation visitor (one for each OCL construct) should abide by the
following contract:

(a) visit the nodes of arguments so that Java statements to compute them are added to a visitor-local running list; and

(b) return the name of the local variable where the result of the expression rooted at the visited node will be available
(the upstream node will need this name to complete its own code generation)

While performing (a) for each argument to an OCL function invocation, the name of the local variable holding the
argument’s value can be obtained: this name was returned as per (b).

Listing 1: Template of the code generated for an IfExp

/* ’NCS’ below stands for the nearest common supertype
for the types of the Then and the Else branches */
NCS if123 = null;
// statements generated by getCondition().accept(this)
// returning the local variable name ’cond456’
if (cond456) {

// statements generated by getThenExpression().accept(this)
// returning the local variable name ’then789’
if123 = then789;

} else {
// statements generated by getElseExpression().accept(this)
// returning the local variable name ’else789’
if123 = else789;

}

For example, the code generated for an if C then E1 else E2 endif appears in Listing 1, making clear that
generated local variables will be in scope (and assigned) by the time they are used: the local variable containing the
result of C is in-scope and assigned by the time it is referred in the generated if statement. As a further example,
the visitor method in charge of compiling an OCL let statement is shown in Listing 2. A more comprehensive
input-output pair (involving iterators and implicit variables) can found in Listing 4.

The compilation algorithm is encapsulated in class CompilationVisitor. The implementation of OCL visitors
in general is discussed in [7], including techniques such as the encapsulation of walker code, instantiation of type-
parametric visitors with type substitutions, and tracking the input-output relationship between AST nodes along a
chain of visitors.

Listing 2: Visit order for a let expression: initializer, in-part

@Override
public String visitLetExp(LetExp<EClassifier, EParameter> letExp) {

OCLExpression<EClassifier> initExpr = letExp.getVariable().getInitExpression();
// add the Java stmts for the initializer part of the letExp
String srcInitVal = initExpr.accept(this);
String srcJavaType = getSrcType(letExp.getVariable().getType());
String srcVarName = letExp.getVariable().getName();
addAssignment(srcJavaType, srcVarName, srcInitVal);
// add the Java stmts for the in part of the letExp
String res = letExp.getIn().accept(this);
return res;

}

Figure 4: Fragment of the OCL 2.0 metamodel (only inheritance relationships shown)

2.4 Implementation Notes

There are some differences in the metamodel-level representation of OCL types between the OCL Standard and MDT
OCL, as is usually the case for paper specs vs. conforming implementations. These differences are mentioned here
to save time to compiler extenders (Sec. 3). We have found no inconsistency in the MDT formulation. Besides the
obvious names differences (EClassifier instead of Classifier), MDT OCL defines ElementType, MessageType,
and TupleType as direct subtypes of EClass (and not of Classifier resp. DataType as the OCL standard suggests).
Figure 3 depicts the situation in MDT OCL (namespace URI http://www.eclipse.org/ocl/1.1.0/Ecore).

EMF-enabled code generation (i.e., suppressEMFTypes == false) results in EList being the supertype of all
ETypedElements that are marked isMany() (EList is responsible for handshaking references in bidirectional as-
sociations, among other services). Given that EList subtypes java.util.Collection (and not the other way
around), we need to wrap and unwrap as EList at method boundaries, so that the method bodies compiled from OCL
conform with the method signatures generated by EMF CodeGen. By “method boundaries” is meant receiving EList
arguments and returning an OCL-computed collection as an EList.

Our current implementation of allInstances() relies on AspectJ-based interception of instantiation, as reported
in [17]. Given that we control the code generation process, it is not really necessary to resort to AspectJ in order to
instrument methods we have generated. A next version will coordinate with EMF CodeGen the generation of such
instance-tracking code as part of protected argless constructors, removing thus the AspectJ dependency. The options
supported by our compiler are:

(a) suppress EMF types (this controls POJO vs. EMF-enabled style)
(b) suppress generation of interfaces
(c) make helper methods (for pre, post, invariant, init) not part of the business interface
(d) generate code to track allInstances()

The @pre construct (used in postconditions to obtain the value a FeatureCallExp had before the operation was
run) is not supported, as it would require keeping WeakReference backup copies of potentially large data structures.
Preconditions and postconditions are translated as assert statements, thus letting the user decide whether to run them
in production (http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html).

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

Expressions involving type literals (oclIsTypeOf(), oclIsKindOf(), oclAsType()) might be initially thought
to pose a challenge, given that not all type information is kept at runtime by Java (in particular, type arguments are
subject to type erasure). Improved reflection support will be available in Java 6 (javax.lang.model.util.Types),
but anyway the only requirement on runtime type reification imposed by OCL is subtype checking and casting, tasks
for which the Java 5 facilities are enough (there is no requirement, for example, to obtain at runtime the textual
representation of a type in full, which would require querying Ecore-provided type information).

3 Extending the compiler

Early on the decision was made to base our compiler on Ecore instead of UML2. The modeling abstractions supported
by Ecore are a subset of those available in UML2. In detail, Ecore does not allow: class-scoped features or operations,
association classes, association-end qualifiers (which office as primary keys to identify an item in a collection), and
the marking of operations as isQuery(). With the expressive power of OCL however, every datamodel that can be
expressed in UML2 can be reformulated as a corresponding Ecore + OCL model (for example, a Singleton pattern
can be stated with an invariant of the form Type->allInstances()->size() = 1). The OCL infrastructure itself
provides uniform support for both UML2 and Ecore, by relying on bounded type parameters, which allow writing
algorithms minimally dependent on the types of the input while preserving static type-safety. We thus see no principle
obstacle to refactor the compiler to take as input UML2-based models instead of an Ecore-based ones.

We plan to explore query-optimization techniques [17] originating in RDBMSs to avoid nested looping, which holds
the prospect of significantly reducing execution time. Regarding database query languages, the translations of OCL
into SQL’92 required proprietary extensions (control structures , stored procedures) [4]. This situation must have
changed with SQL3 and JPQL (Java Persistence Query Language, [6]) but we are not aware of any fully working
OCL compilers targeting those languages, which would be a useful complement to EMF persistence solutions such as
Teneo, http://www.elver.org/.

The detection of the minimal subset of invariants that need rechecking (due to updates to the object population, inter-
cepted at runtime) has been addressed a number of times. One technique to achieve detection relies on AspectJ and
is described by Dzidek [3]. Altenhofen et. al. also address this problem [1]. Existing approaches re-evaluate from
scratch each invariant in the “potentially affected” set, upon detecting an update to any location referred from the AST
of the invariant. However, it would be enough to evaluate those nodes upstream of the updated one, propagating values
as long as the new value differs from the cached previous value (using memoization, applied to Java in [16]). Recur-
sion and looping result in the dynamic dataflow not matching the shape of the compile-time AST (Sec. 2.1), an issue
to consider to avoid false-positives (invariants that actually need no rechecking) as well as, more importantly, mispre-
dictions (overlooking re-evaluating an invariant whose value has actually changed). Checking invariants at transaction
boundaries (moreover, in the concurrent case) is addressed for Concurrent Haskell in [11]. To our knowledge, the
closest work in Java to achieve software transaction memory is [12].

Another area for future work consists in re-architecting our (batch) compiler to support incremental compilation. This
would require reacting to the deltas that the workspace notification mechanism provides.

4 Integration in an MDSD Toolchain, Performance Evaluation

Ecore + OCL specs, while declarative, still lack any form of behavioral specification, as is possible with statecharts, or
Event-Condition-Action rules. If such behavioral specs were available, fully working components could be generated
by a model compiler (as done by Executable UML [15] tools, which usually target the C programming language).
Even without behavioral specs the productivity and quality gains are significant: Figure 5(a) depicts a screenshot of
an EMF-generated tree editor that allows editing sentences of a custom DSL (Domain Specific Language). Ad-hoc
queries and method invocations can be performed through a (generated) OCL Interpreter. Figure 5(b) displays a close-
up of the Problems View, whose entries list the OCL invariants currently broken for the object population being edited.

http://www.elver.org/

No single Java statement was manually written to realize this editor. In the specific case of DSL editors, projects
are underway to generate a text editor supporting usability features such as syntax-directed completion, markers for
violations of well-formedness, use-defs navigation, folding, and structural views [5].

Figure 2: Querying the AST of a DSL as it is being built

The other open document (ggejbql.ecore) is the metamodel itself, it’s handy in case one
needs to remember the “syntax” of the ASTs that we can build:

(a) Querying an object population (sentences of a custom DSL)

Tooling the EJB3QL Metamodel using EMF technologies

Miguel Garcia, 2006-09-25

After seeing how our octopus2emf plugin generates OCL in the format expected by EMF,
it made sense to explore the practical aspects of tooling a Domain Specific Language
taking as starting point its metamodel alone. Articles are available for smaller-scale
languages (e.g., the generation of a graphical editor for flat statecharts).

The end result of the activity reported here is an EMF-generated tree-based editor for
EJB3QL, the query language for Java Persistence standardized in JSR-220. That
metamodel goes beyond most metamodels you find on Internet by including all the well-
formedness rules (WFRs) of the language as OCL invariants.

On (Figure 2) we can see a tree being built to represent the EJB3QL query

UPDATE Employee e
SET workAddress = e

which is malformed, given that the type of workAddress is Address not Employee.
Clicking Validate will pick up whatever OCL inv have been specified, and report as in
Figure 1.

Figure 1: Report about well-formedness rules being broken for the sentences being edited

(b) Broken well-formedness rules for the DSL sentences

Figure 5: Using the generated code in an EMF-generated editor

Measuring wall-clock time, compiled code runs up to six times faster than its interpreted counterpart (twice as fast
on average). In all cases, elapsed times for the interpreter do not include runtime parsing and AST building, as these
operations can be amortized among several evaluations. The largest speedups correspond to nested loops, as is the
case for the invariant shown in Listing 3 evaluated over 10000 instances (84 sec vs. 580 sec).

Listing 3: Nested loop in an invariant, resulting in a cartesian product

context LoyaltyProgram
inv: self.participants->forAll(c1 | self.participants->forAll(c2 |

c1 <> c2 implies c1.name <> c2.name))

Better speedups could be achieved if our compiler were an optimizing compiler [17]. Some compile-time optimizations
(e.g. constant propagation) are performed by the JIT (Just-in-Time) compiler of Java anyway. Additional algorithms
for OCL rewriting appear in [7] and [9].

5 Related Work and Conclusions

Another OCL → Java compiler has been available for Eclipse since 2005 (http://octopus.sourceforge.
net/), providing syntax-aware text editors for integrated UML + OCL specs. The main differences with our work
are: (a) Octopus adopts a code generation strategy where separate helper methods compute subexpressions, we inline
them instead; (b) the notification, serialization, and reflection mechanisms that most EMF-based editors rely on are
not present in the POJO-style code generated by Octopus. In particular, (c) ad-hoc OCL queries (i.e., known only at
runtime) cannot be evaluated, a task that MDT OCL supports with OCL Interpreter (and associated GUI).

Once OCL specs are edited alongside Ecore-based class models, it is possible for individually correct refactorings
at the class model level to invalidate OCL expressions referring to affected model elements. Besides detecting these
situations, a tool could attempt to re-establish consistency by refactoring the damaged OCL expressions. RoclET [13]
is an Eclipse-based tool for such integrated refactorings, http://www.roclet.org/.

http://octopus.sourceforge.net/
http://octopus.sourceforge.net/
http://www.roclet.org/

The availability of compilers constitutes an acid-test for the specifications of their input languages. The metamodel
approach to language specification [6] has proved to be a step forward, provided that the same level of precision
attained by previous language definition techniques is followed (i.e., formulation of static semantics as OCL invariants,
including typing rules). Several synergy effects are yet to be realized from the unified mechanism for constraining
object models that OCL offers (synergies in the fields of program verification, software repositories, and automatic
generation of tools, to name a few). Their impact will be amplified by the availability of such capabilities on the
Eclipse platform.

References

[1] M. Altenhofen, T. Hettel, and S. Kusterer. OCL Support in an Industrial Environment. In B. Demuth, D. Chiorean,
M. Gogolla, and J. Warmer, editors, OCL for (Meta-)Models in Multiple Application Domains, pages 126–139, Dresden,
2006. University Dresden. http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_
Altenhofen_OCLSupport.pdf.

[2] A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java. Cambridge University Press, New York, NY, USA,
2003. http://www.cs.princeton.edu/˜appel/modern/java/.

[3] L. C. Briand, W. J. Dzidek, and Y. Labiche. Instrumenting contracts with aspect-oriented programming to increase ob-
servability and support debugging. In I. C. Society, editor, 21st IEEE International Conference on Software Maintenance
(ICSM), Budapest, Hungary, September 25-30, pages 687–690. IEEE, 2005. http://www.simula.no/research/
engineering/publications/Briand.2005.1/downloadPdfFile.

[4] B. Demuth, H. Hußmann, and S. Loecher. OCL as a Specification Language for Business Rules in Database Applications. In
M. Gogolla and C. Kobryn, editors, UML, volume 2185 of LNCS, pages 104–117. Springer, 2001.

[5] M. Garcia. Generation of DSL Tools based on Language Definitions. Presentation at MDSD Today 2007, http://www.
sts.tu-harburg.de/mi.garcia/SoC2007/GenDSLToolsFromLangDef.pdf.

[6] M. Garcia. Formalizing the Well-formedness Rules of EJB3QL in UML + OCL. In T. Kühne, editor, Reports and Revised
Selected Papers, Workshops and Symposia at MoDELS 2006, Genoa, Italy, LNCS 4364, pages 66–75. Springer-Verlag, 2006.

[7] M. Garcia. How to process OCL Abstract Syntax Trees, Eclipse Technical Article, 2007. http://www.eclipse.org/
articles/article.php?file=Article-HowToProcessOCLAbstractSyntaxTrees/index.html.

[8] M. Garcia. Rules for Type-checking of Parametric Polymorphism in EMF Generics. In W.-G. Bleek, H. Schwentner,
and H. Züllighoven, editors, Software Engineering 2007 – Beiträge zu den Workshops, volume 106 of GI-Edition Lec-
ture Notes in Informatics, pages 261–270, 2007. http://www.sts.tu-harburg.de/˜mi.garcia/pubs/2007/
mdsdHeute/garcia-emfgen-2.pdf.

[9] M. Giese and D. Larsson. Simplifying transformations of OCL constraints. In L. C. Briand and C. Williams, editors, MoDELS,
volume 3713 of LNCS, pages 309–323. Springer, 2005.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd Edition) (Java Series). Addison-
Wesley Professional, July 2005.

[11] T. Harris and S. P. Jones. Transactional memory with data invariants. In First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, 2006. (To appear). http://research.microsoft.
com/users/simonpj/papers/stm/stm-invariants.pdf.

[12] B. Hindman and D. Grossman. Strong Atomicity for Java Without Virtual-Machine Support. Technical Report 2006-05-01,
Dept. of Computer Science and Engineering, University of Washington, Seattle, WA, USA, May 2006. http://www.cs.
washington.edu/homes/djg/papers/atomjava_tr_may06.pdf.

[13] C. Jeanneret, L. Eyer, S. Marković, and T. Baar. RoclET: Refactoring OCL Expressions by Transformations. In Software &
Systems Engineering and their Applications,19th International Conference, ICSSEA 2006, 2006. http://infoscience.
epfl.ch/getfile.py?recid=90714&mode=best.

[14] Object Management Group. OMG OCL Specification v2.0, formal/2006-05-01, May 2006. http://www.omg.org/
technology/documents/formal/ocl.htm.

[15] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model Driven Architecture with Executable UML. Cambridge
University Press, Cambridge, UK, 2004.

[16] A. Shankar and R. Bodı́k. DITTO: Automatic incrementalization of data structure invariant checks (in Java). In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation, pages 310–319,
New York, NY, USA, 2007. ACM Press. http://www.cs.berkeley.edu/˜aj/cs/ditto/.

[17] D. Willis, D. J. Pearce, and J. Noble. Efficient Object Querying for Java. In D. Thomas, editor, ECOOP, volume 4067 of
LNCS, pages 28–49. Springer, 2006. http://www.mcs.vuw.ac.nz/˜djp/files/WPN_ECOOP06.ps.

http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://www.cs.princeton.edu/~appel/modern/java/
http://www.simula.no/research/engineering/publications/Briand.2005.1/downloadPdfFile
http://www.simula.no/research/engineering/publications/Briand.2005.1/downloadPdfFile
http://www.sts.tu-harburg.de/ mi.garcia/SoC2007/GenDSLToolsFromLangDef.pdf
http://www.sts.tu-harburg.de/ mi.garcia/SoC2007/GenDSLToolsFromLangDef.pdf
http://www.eclipse.org/articles/article.php?file=Article-HowToProcessOCLAbstractSyntaxTrees/index.html
http://www.eclipse.org/articles/article.php?file=Article-HowToProcessOCLAbstractSyntaxTrees/index.html
http://www.sts.tu-harburg.de/~ mi.garcia/pubs/2007/mdsdHeute/garcia-emfgen-2.pdf
http://www.sts.tu-harburg.de/~ mi.garcia/pubs/2007/mdsdHeute/garcia-emfgen-2.pdf
http://research.microsoft.com/users/simonpj/papers/stm/stm-invariants.pdf
http://research.microsoft.com/users/simonpj/papers/stm/stm-invariants.pdf
http://www.cs.washington.edu/homes/djg/papers/atomjava_tr_may06.pdf
http://www.cs.washington.edu/homes/djg/papers/atomjava_tr_may06.pdf
http://infoscience.epfl.ch/getfile.py?recid=90714&mode=best
http://infoscience.epfl.ch/getfile.py?recid=90714&mode=best
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.cs.berkeley.edu/~aj/cs/ditto/
http://www.mcs.vuw.ac.nz/~ djp/files/WPN_ECOOP06.ps

Listing 4: The noAccounts invariant translated into Java

public boolean invariant_noAccounts(DiagnosticChain diagnostics,
Map<Object, Object> context) {

/*
context LoyaltyProgram
inv invariant_noAccounts :
-- when the LoyaltyProgram does not offer the possibility to earn
-- or burn points, the program members do not have LoyaltyAccounts
partners.deliveredServices->forAll(pointsEarned = 0 and pointsBurned = 0)
implies memberships.account->isEmpty()

*/
org.eclipse.ocl.util.Bag<RandL.Service> collect1 =

org.eclipse.ocl.util.CollectionUtil.createNewBag();
for (RandL.ProgramPartner i_ProgramPartner :

org.eclipse.ocl.util.CollectionUtil.asSet(this.getPartners())) {
collect1.addAll(org.eclipse.ocl.util.CollectionUtil.asSet(

i_ProgramPartner.getDeliveredServices()));
}
Boolean forAll2 = true;
for (RandL.Service i_Service : collect1) {

if (forAll2) {
Boolean equal3 = Boolean.valueOf(i_Service.getPointsEarned() == 0);
Boolean and4 = equal3;
if (and4) {

Boolean equal5 = Boolean.valueOf(i_Service.getPointsBurned() == 0);
and4 = equal5;

}
forAll2 = and4;

}
}
Boolean implies6 = forAll2;
if (!(implies6)) {

implies6 = Boolean.TRUE;
} else {

java.util.List<RandL.LoyaltyAccount> collect7 =
org.eclipse.ocl.util.CollectionUtil.createNewSequence();

for (RandL.Membership i_Membership :
org.eclipse.ocl.util.CollectionUtil.asOrderedSet(

this.getMemberships())) {
collect7.add(i_Membership.getAccount());

}
implies6 = (new Boolean(collect7.isEmpty()));

}
if (!(implies6)) {

if (diagnostics != null) {
diagnostics.add(new BasicDiagnostic(Diagnostic.ERROR,
RLValidator.DIAGNOSTIC_SOURCE,
RLValidator.US_ADDRESS__HAS_US_STATE,
EcorePlugin.INSTANCE.getString("_UI_GenericInvariant_diagnostic",

new Object[] { "LoyaltyProgram_noAccounts",
EObjectValidator.getObjectLabel(this, context) }),
new Object[] { this }));

}
return false;

}
return true;

}

	Introduction
	Compilation Phases
	Information initially available to the compiler
	Types Conversion
	Expressions Translation
	Implementation Notes

	Extending the compiler
	Integration in an MDSD Toolchain, Performance Evaluation
	Related Work and Conclusions

