Extensibility,
Componentization, and
Infrastructure

Ted Slupesky
(Slupesky@us.ibm.com)

Introduction

This is the first ‘tech talk’ regarding IBM’s propesed donation to the
Aperi community.

It covers two tepics:
= Extensibility & componentization
= Base server infrastructure

Fundamental technical level-set for IBM initial contribution

The first part of this presentation (extensibility and
componentization) is more ferward-looking| than the rest, because
we think the topic IS se Important torget right for the Cemmon
Platiorm

Extensibility and Componentization

Preposed Architecture of Platiornm

GUI — OSGi Container
Framework Basic Disk Tape Fabric Plug-In
Bundle Bundle Bundle Bundle Bundle Bundle
I

Server — OSGi Container

Basic Ul Disk Ul Fabric Ul Disk Mgr Fabric Mgr Filesys Mgr

Service Service Service Service Service Service

Filesystem Tape Ul Plug-In Ul Tape Plug-In
Ul Service Service Service Service ‘Manager’

Ul handlers Managers

Discovery Monitoring Control Fabric Filesystem SNMP
Service Service Service Agent Svc Agent Svc Agent Svc

Storage Mgt Infrastructure Agent Management

Messaging Scheduler Web Svc

Database Config Logging
Service

Interface Service Service Service Service
DB Base Infrastructure

i
RDBMS — Derby SNMP Agent

Aperi Schema Fabric Filesystem Plug-In
Schema Extension Service Service Service

Process Donated Component | Extension Point § External to Aperi

|
Host Agent — OSGi Container

Importance o Extensinility and
Componentization

= Extensibility is a critical requirement for the Aperi Common Platform

= The ability to insert new functions. into the Aperii Common Platform at runtime,
dynamically, without recompilation
= A ‘plug-in-model’
It enables developers to create value-added or higher-level applications and
insert them at runtime into the ceammon platferm

= Componentization Is clesely related

The architecture is composed of modularized components with well-defined
interfaces. A component can be replaced by ani alternative implementation that
conferms to the required interface.

Supports an extensibility model

Allews' developers to select components, fromi the. Common Platform;and reuse
them in their own| applications

= Working tegether, extensihbility: and componentization allow:
= A plug-in can add new function to the platierm (Insert new: Components)

= A plug-in can replace existing function;in;the platiorm (replace existing
COMpPORENts)

Modes of Interaction with Aperi
Common Platferm

It is critical that we have consensus on what the modes of interaction are

Users could dewnload ‘Aperi 1.0* as anrapplication, install' it, and use it to: perform
‘basic functions’

Developers could create value-added applications (plug-ins) that integrate into the
common platferm

= Plug-ins could be open seurce or not

= Users could acguire these plug-ins (either by dewnlead or by purchase) and load them into
their Common Platform|instance

Developers could create (and sell) complete efferings that include the common
platiormi plus their proprietary value-added plug-ins

Develepers could contribute changes to the hase Common Platierm infrastructure (1o
be picked up in the next release of the Common Platferm)

Develepers could take pieces ofi the Common| Platiomm andiintegrate them inte: their
own, unrelated’ products

= Subject to Eclipse license terms, which are commercially: fiiendly:
= Jhis reuse could be at any level: seurce code function, source! file, whole component...

Applications | Bundies

|_ Services

i Life Cycle |
| Modules | I

05 & Hardwars

= == C 000

We propose OSGi as the foundation of our extensibility & componentization models
L_ots of infermation at

“The OSGiI Service Platform prevides a computing environment for applications, called bundles, which
execute tegether in a single JVM. Bundles can be installed, updated, and uninstalled dynamically.
Installed bundles find a rich envirenment te execute in.”

What is OSGI?

= “The OSGI™ specifications define a standardized, component eriented, computing envirenment for networked
Senvices.”

“Adding an OSGIl Service Platiorm tora networked device (embedded as well as servers), adds the capability to
manage the life cycle ofi the seftware components in the device fram anywhere in the network.”

“Software components can be installed, updated, or remoeved on the fly witheut having|to disrupt the cperation of
the device.”

“Software components are libraries; or applications that can dynamically discover and use other components.”

OSGI Isia small framewerk intended te run ' a bread range of envirenments
= Can runiin J2ME on embedded devices

OSGI Architecture

The OSGI framework is iImplemented as a container process that loads
components (bundles)

= A container is am OS process that runs a JVM
= Bundles export services or contain common, library code

The framework consists of layers, three of which are mentioned here:
= The Module Layer is responsible for reading OSGi ‘bundles’
= A bundle is a structured .jar file
= A bundle is the ‘fundamental unit of modularization’

The Life Cycle LLayer provides an APl fer contrellingl security: and:life cycle
= |nstall; upgrade, and remove bundles, which are versioned
= Start and stop bundles

= The Service Layer allows bundles to export ‘senvice APIS’
= The senvice medellis a publish, find and bind medel

= A senvice is a normal Java object that Is registered under one or moere Java interfaces
with the service registry.

Bundles can register services, search for them, or receive notifications when their
legistration state changes

[From) the developer’s perspective: you write Sernvices, package them as
pbundles; and depley them in the container

Extensibility and Componentization
off Aperi Common Platform

= \\We propose that

= Each process of the Aperi architecture (Ul, server,
agent) be an OSGI container

= The components within those processes be packaged
as OSGI bundles that export OSGI Services

= Components can be reused In other applications

= Naturally there will be some Inter-component
dependencies

= OSGI Is centrallto Eclipse

What Does It Take to Extend the
Common Platform?

= Stepping back, what would it mean to extend the

common platform by creating a higher-level, value-added
application?

= The developer would create ene or more plug-ins to the

Common: Platform

= A GUI plug-in;, with the code for the new: panels

= A server plug-inite handle reguests from the GUIland map them
to calls te ether senver plug-ins

= A server plug-in that provides the basic functions of the value-
added application

= This plug-in might be respoensible for additienal datalkhase schema

= Poessibly, anagent plug-in, Iff seme host-based flunction IS
required
= The ‘application’ could upgrade ether compenents, I required

" Upgraded components need to be: compatiblewith previous
Implementations te aveid compatibility: proklems

Base Server Infrastructure

Infrastructure

Config Logging Messaging Scheduler Web Svc
Service Service Service Service Service

Base Infrastructure

= Covers base Infrastructure components that are
Independent of the storage management domain

= Config Service

Logging Service
Messaging Service
Scheduler Service
Web Services Sernvice

And... a discussion of the TPC 3.1 ‘Senvice Manager:

Config Senvice

The Config Service provides access to fundamental configuration parameters

Some live only in a .properties file (basically, port numbers and database connectivity
parameters)

The rest live in the database

The parameters:
= Basic info
= Port numbers
Datalbase connectivity
= Database name, JDBC URL to access database, JDBC Username and password (encrypted)
Legging and tracing
= TJrace level for each compoenent
Service configuration
= \Which services to start
Generall configurable parameters
= V/arious tunable timeout andi retry values

= API
= APISitorget, Set, remove parameters
= Passwords get special treatment (for encryption reasens)

= Evenis are published when a parameter changes

Logging Service

Manages multiple log files, with rollover and size caps

Application creates multiple leggers
= Per-service message files
= Per-service trace files
= Audit log
= |ndividual ‘job legs’

Loggers are retrieved from LogManagerkEactory.

Messages are sent to a Logger via ‘message” method via keys
= Keys are looked up in message files, so that messages are translated

-eg@ing service provides: alstract Interface ever more basic ‘legging
provider’ such as JiLeg

Logging Examples

= Example Usage

msglLogger = LogManagerFactory.gethMessagelogger (MyLoggerName);
tracelLogger = LogManagerFactory.getiracelogger(MyTracelLoggerName);
msglLogger .- sethMessageF1le(MyMessageFile);

msglLogger -message(lLevel . INEO, className, methodName,
“ErrorMessagelD™);

I'f (tracelogger - 1slLogging().)
tracelLogger - exception(lLevel .ERROR, className, methodName, snmpE);

= Example configuration properties
myTracelLoggerName. 'nstenerNames=Ffr1le. trace
myliraceloggerName - Loggeriype=liracelLogger
my TracelLeggerName. loggrng=true
My T racelLoggerName.. leve I=WARN

Messaging Service

Based on JMS (pub/sub implementation)

Used for leosely-coupled communication among
components

Events can be ‘subscribed’ to, by supplying the
name ofi an Event class (as the ‘topic’) and an ID
for a class that implements Messagelistener

Events can be received via onlviessage()

Events can be published via JMS
createMessage()

Messaging Examples 1.

The process for subscribing to events is:
= Create a JMS provider factory
= Use the factory to create a subscriber

The subscriber will specify the following parameters:
Topic
String defining the Topic. The general convention within the Device Server is to use the classname of an

Event Class for the topic. The internal logic will send events matching this topic or topics inheriting
from the topic in the Event hierarchy.

Subscriber 1D

Optional ID identifying the subscriber. NULL if not specified.

Filter

For future use

Listener

Class implementing MessageListener that will be called when events matching the Topic and Filter are
published.

Example:

factory = FactoryFactory-createFactory(Fac}E{yFactory-CURRENT_JMS_PROVIDER,
nu E

subscriber = fFactory.createSubscriber(MyEvent.class.getName(),
nulll, 7/ subscriber ID — none specified
null, 7/ Ffilter — none speciftied

myCallback); 7/ instance of class that rmplemenits
Messagel istener

Messaging Examples 2

Receiving Events

= \When an event matching the topic and filter is published, the onMessage function of the
Messagelistener interface will be called.

public void onMessage(Message msa@);

It Is the responsibility ofi the receiver te quickly execute the enMessage function to
prevent impacting other listeners.

Unsubscribing for Events
Clients unsubscribe for events by clesing the callback handler.
try

{
subscriber.close();
factory.close();
s
catch (Exception e) {
// handle the excepition

¥

Messaging Example 3

Publishing Events
* The process for publishing an event is:

= Setup the event template
= The template defines the parameters that can be used in the Subscription filters, such as publisher ID.

factory = FactoryFactory.createfFactory(FactoryFactory.CURRENT JIMS_ PROVIDER, null);

template = factory.createlMessage(nulil);
template.setStringProperty(PropertyName, PropertyValue);

Publish the event
TopicPublisher publisher = fFactory.createPublisher(anEvent.getClass() .-getName(),

template);

try {
Message msg = Factory.createlMessage(anEvent) ;

publrsher .publ 1sh(msg);
} catch(JMSException je) {

// handle the JNS exceptrons
} catch(Exception e) {

// handle other exceptirons
b

Note: The client invocation ofi the onlMessage calls will be performed within the thread of
the publisher — the clients must quickly precess and return fromi the enMessage call to

prevent impacting other listeners.

Scheduler Sernvice

= Provides ability to run ‘jobs’ on a schedule
= These are data collection jobs

= Can distribute portions of a job to specific agents

= Primary interaction Is via the database rather than specific API
That Is, the scheduler loeks for werk 1o do. in a specific database table
When it's time to do the work, it does so
When complete, it writes the status back to the database

S0, clients interact with the scheduler by reading and writing| the required
database tables

Web Services Service

Creates SOAP wrapper and WSDL for public API
exposed by ‘Services’

Based on Apache SOAP

Sernvice Implementers and clients don't have to knew
anything abeut SOAP or WSDL — can use provided
‘proxy’ libraries te ignore protocol details if they wish

In TRPC 3.1, this IS part ofi the ‘Senvice Vanager — see
fellowing slides

Service Manager

From December presentation:
= TPC 3.1 does not use OSGI In the server
= |t has two servers, ‘Data’ and ‘Device’

= The Device Server has an extensibility mechanism
called the “Sernvice Manager

Implemented as a senviet

Senvilet reads config file for ‘services’ to lead,
then leads them

Just a simple way: tor dynamically: configure. the
Services running| In the server

ServiceManager Interfiace

publtc Interface IService {
publrc java.lang.String getVersion();
publrc java.lang-String getName();
publrc boolean saveState(); <- for future use
public boolean restore(); <- for future use
public boolean remove(); <- for future use
publrc beelean startup();
publrc beelean shutdoewn();
publrc java.lang.String getbDescription();
publrc Status getStatus();

publrc java.lang.-String getStats(),; <- for future
use

Service Definition

= Configuration for a service:

DiscoverService = com. 1bm.tpc.DiscoverService application
autostart nonstatic 6

" Service Name
= Class

= Scope (Application vs. Session vs. Reguest)

= Application = a singleton instance of the service Is used to invoke all
method invocations. In this case state can be maintained across all
clients.

Reguest = a new. instance of the service is used to inveke each method
invocation. In this case no state is maintained.

Session = a single instance of the senvice is used to invoke methods; in
a particular httprsession. In this case state can be maintained per
Session per client.

Autestart (Yes or No)
Static (Static vs. Non-Static) — for future use
Order

Service Communication

= TWwo proxies are available to Invoke services
= Remote proxy uses SOAP
= | ocal proxy makes a local call (ho SOAP)

= Proxy handles protocol issues. Caller can ignore whether the
transport Is SOAP or not.

InvocationHandler SoapClient , RPCRouterServlet
invoke invoke ' TSNMServiceManager

RP vaProvider

SoapServiceProxy RPCSecureJavaProvider
invoke ()

convert properties
call SoapClient.invoke

RPCRouter

Service Implementation

Proxy Example

= Service Call
IDIscover discoveryProxy =
(IDiscover) ServiceRegistry.bind(
<url>:i<port>,
IDIscover . SERVICE NAME,
IDiscover.class);

= ecalf Senvice Call
IDIscover discoveryProxy =
(ID1scover) ServiceRegistry.localBind(
IDiscover.SERVICE NAME,
IDIscover.class);

Conclusion

Conclusion

= The big guestion: what Is the right
priontization; for extensipility Work versus
other possible work en Aperi?

