
	 1	

Eclipse Kura
MQTT Namespace Guidelines

	
Overview
MQTT Request/Response Conversations

• MQTT Request/Response Example
MQTT Remote Resource Management

• Read Resources
• Create or Update Resources
• Delete Resources
• Other Operations

MQTT Unsolicited Events
Discoverability
Remote OSGi Management via MQTT

• Remote OSGi ConfigurationAdmin Interactions via MQTT
o Read All Configurations
o Read Configuration for a Given Service
o Update All Configurations
o Update the Configuration of a Given Service
o Example Management Web Application

• Remote OSGi DeploymentAdmin Interactions via MQTT
o Read All Deployment Packages
o Install a Deployment Package
o Uninstall a Deployment Package
o Read All Bundles
o Start a Bundle
o Stop a Bundle
o Example Management Web Application

Overview
This section provides guidelines on how to structure the MQTT topic namespace
for messaging interactions with applications running on IoT gateway devices.

Interactions may be solicited by a remote server to the gateway using a
request/response messaging model, or unsolicited when the gateway simply
reports messages or events to a remote server based on periodic or event-driven
patterns.

The table below defines some basic terms used in this document:

account_name Identifies a group of devices and users. It can be

seen as partition of the MQTT topic namespace.

	 2	

For example, access control lists can be defined
so that users are only given access to the child
topics of a given account_name.

client_id Identifies a single gateway device within an
account (typically the MAC address of a
gateway’s primary network interface). The
client_id maps to the Client Identifier (Client ID)
as defined in the MQTT specifications.

app_id Identifies an application running on the gateway
device. To support multiple versions of the
application, it is recommended that a version
number be assigned with the app_id (e.g.,
“CONF-V1”, “CONF-V2”, etc.)

resource_id Identifies a resource(s) that is owned and
managed by a particular application.
Management of resources (e.g., sensors,
actuators, local files, or configuration options)
includes listing them, reading the latest value, or
updating them to a new value. A resource_id
may be a hierarchical topic, where, for example,
“sensors/temp” may identify a temperature
sensor and “sensor/hum” a humidity sensor.

A gateway, as identified by a specific client_id and belonging to a particular
account_name, may have one or more applications running on it (e.g.,
“app_id1”, “app_id2”, etc.). Each application can manage one or more resources
identified by a distinct resource_id(s).

Based on this criterion, an IoT application running on an IoT gateway may be
viewed in terms of the resources it owns and manages as well as the unsolicited
events it reports.

MQTT Request/Response Conversations
Solicited interactions require a request/response message pattern to be
established over MQTT. To initiate a solicited conversation, a remote server first
sends a request message to a given application running on a specific device and
then waits for a response.

To ensure the delivery of request messages, applications that support
request/response conversations via MQTT should subscribe to the following topic
on startup:

	 3	

 $EDC/account_name/client_id/app_id/#

The $EDC prefix is used to mark topics that are used as control topics for remote
management. This prefix distinguishes control topics from data topics that are
used in unsolicited reports and marks the associated messages as transient (not
to be stored in the historical data archive, if present).

NOTE: While Eclipse Kura currently requires “$EDC” as the prefix for control
topics, this prefix may change in the future for the following reasons:

• MQTT 3.1.1 discourages the use of topic starting with “$” for application
purposes.

• As a binding of LWM2M over MQTT is taking shape, it would makes
sense to use a topic prefix for management messages like “LWM2M” or
similar abbreviations – e.g. “LW2”, “LWM”.

A requester (i.e., the remote server) initiates a request/response conversation
through the following events:

1. Generating a conversation identifier known as a request.id (e.g., by
concatenating a random number to a timestamp)

2. Subscribing to the topic where the response message will be published,
where requester.client.id is the client ID of the requester, such as:

$EDC/account_name/requester.client.id/app_id/REPLY/request.id

3. Sending the request message to the appropriate application-specific topic

with the following fields in the payload:

o request.id (identifier used to match a response with a request)
o requester.client.id (client ID of the requester)

The application receives the request, processes it, and responds on a REPLY
topic structured as:

$EDC/account_name/requester.client.id/app_id/REPLY/request.id

NOTE: While this recommendation does not mandate the format of the message
payload, which is application-specific, it is important that the request.id and
requester.client.id fields are included in the payload. Eclipse Kura leverages an
MQTT payload encoded through Google Protocol Buffers. Eclipse Kura includes
the request.id and the requester.client.id as two named metrics of the Request
messages. The Eclipse Kura payload definition can be found at the following link:

• https://github.com/eclipse/kura/blob/develop/kura/org.eclipse.kura.core.clo
ud/src/main/protobuf/kurapayload.proto

	 4	

Once the response for a given request is received, the requester unsubscribes
from the REPLY topic.

MQTT	 Request/Response	 Example	
The following sample request/response conversation shows the device
configuration being provided for an application:

account_name: guest
device client_id: F0:DE:F1:C4:53:DB
app_id: CONF-V1
Remote Service Requester client_id: 00:E0:C7:01:02:03

The remote server publishes a request message similar to the following:

• Request Topic:
o $EDC/guest/F0:DE:F1:C4:53:DB/CONF-V1/GET/configurations

• Request Payload:

o request.id: 1363603920892-8078887174204257595
o requester.client.id: 00:E0:C7:01:02:03

The gateway device replies with a response message similar to the following:

• Response Topic:
o $EDC/guest/00:E0:C7:01:02:03/CONF-

V1/REPLY/1363603920892-8078887174204257595

• Response Payload, where the following properties are mandatory:
o response.code

Possible response code values include:

§ 200 (RESPONSE_CODE_OK)
§ 400 (RESPONSE_CODE_BAD_REQUEST)
§ 404 (RESPONSE_CODE_NOTFOUND)
§ 500 (RESPONSE_CODE_ERROR)

o response.exception.message (value is null or an exception

message)
o response.exception.message (value is null or an exception stack

trace)

NOTE: In addition to the mandatory properties, the response payload may also
have custom properties whose description is beyond the scope of this document.

	 5	

It is recommended that the requester server employs a timeout to control the
length of time that it waits for a response from the gateway device. If a response
is not received within the timeout interval, the server can expect that either the
device or the application is offline.

MQTT Remote Resource Management
A remote server interacts with the application’s resources through read, create
and update, delete, and execute operations. These operations are based on the
previously described request/response conversations.

Read	 Resources	
An MQTT message published on the following topic is a read request for the
resource identified by the resource_id:

• $EDC/account_name/client_id/app_id/GET/resource_id

The receiving application responds with a REPLY message containing the latest
value of the requested resource.

The resource_id is application specific and may be a hierarchical topic. It is
recommended to design resource identifiers following the best practices
established for REST API.

For example, if an application is managing a set of sensors, a read request
issued to the topic "$EDC/account_name/client_id/app_id/GET/sensors" will
reply with the latest values for all sensors.

Similarly, a read request issued to the topic
"$EDC/account_name/client_id/app_id/GET/sensors/temp" will reply with the
latest value for only a temperature sensor that is being managed by the
application.

Create	 or	 Update	 Resources	
An MQTT message published on the following topic is a create or update request
for the resource identified by the resource_id:

• $EDC/account_name/client_id/app_id/PUT/resource_id
	

The receiving application creates the specified resource (or updates it if it already
exists) with the value supplied in the message payload and responds with a
REPLY message.

As in the read operations, the resource_id is application specific and may be a
hierarchical topic. It is recommended to design resource identifiers following the
best practices established for REST API. For example, to set the value for an
actuator, a message can be published to the topic

	 6	

"$EDC/account_name/client_id/app_id/PUT/actuator/1" with the new value
suplliied in the message payload.

Delete	 Resources	
An MQTT message published on the following topic is a delete request for the
resource identified by the resource_id:

• $EDC/account_name/client_id/app_id/DEL/resource_id

The receiving application deletes the specified resource, if it exists, and responds
with a REPLY message.

Execute	 Resources	
An MQTT message published on the following topic is an execute request for the
resource identified by the resource_id:

• $EDC/account_name/client_id/app_id/EXEC/resource_id

The receiving application executes the specified resource, if it exists, and
responds with a REPLY message. The semantics of the execute operation is
application specific.

Other	 Operations	
The IOT application may respond to certain commands, such as taking a
snapshot of its configuration or executing an OS-level command. The following
topic namespace is recommended for command operations:

• $EDC/account_name/client_id/app_id/EXEC/command_name

An MQTT message published with this topic triggers the execution of the
associated command. The EXEC message may contain properties in the MQTT
payload that can be used to parameterize the command execution.

MQTT Unsolicited Events
IOT applications have the ability to send unsolicited messages to a remote server
using events to periodically report data readings from their resources, or to report
special events and observed conditions.

NOTE: It is recommended to not use MQTT control topics for unsolicited events,
and subsequently, to avoid the $EDC topic prefix.

Event MQTT topics generally follow the pattern shown below to report unsolicited
data observations for a given resource:

• account_name/client_id/app_id/resource_id

	 7	

Discoverability
The MQTT namespace guidelines in this document do not address remote
discoverability of a given device’s applications and its resources. The described
interaction pattern can be easily adopted to define an application whose only
responsibility is reporting the device profile in terms of installed applications and
available resources.

Remote OSGi Management via MQTT
The concepts previously described have been applied to develop a solution that
allows for the remote management of certain aspects of an OSGi container
through the MQTT protocol, including:

• Remote deployment of application bundles
• Remote start and stop of services
• Remote read and update of service configurations

The following sections describe the MQTT topic namespaces and the application
payloads used to achieve the remote management of an OSGi container via
MQTT.

NOTE: For the scope of this document, some aspects concerning the encoding
and compressing of the payload are not included.

The applicability of the remote management solution, as inspired by the OSGi
component model, can be extended beyond OSGi as the contract with the
managing server based on MQTT topics and XML payloads.

Remote	 OSGi	 ConfigurationAdmin	 Interactions	 via	 MQTT	
An application bundle is installed in the gateway to allow for remote management
of the configuration properties of the services running in the OSGi container.

For information about the OSGi Configuration Admin Service and the OSGi Meta
Type Service, please refer to the OSGi Service Platform Service Compendium
4.3 Specifications.

The app_id for the remote configuration service of an MQTT application is
“CONF-V1”. The resources it manages are the configuration properties of the
OSGi services. Service configurations are represented in XML format.

The following service configuration XML message is an example of a WatchDog
service:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:configuration xmlns:ns2=http://eurotech.com/esf/2.0
 xmlns=http://www.osgi.org/xmlns/metatype/v1.2.0
 pid="org.eclipse.kura.watchdog.WatchdogService">

	 8	

 <OCD id="org.eclipse.kura.watchdog.WatchdogService"
 name="WatchdogService"
 description="WatchdogService Configuration">
 <Icon resource="WatchdogService"/>
 <AD id="watchdog.timeout"
 name="watchdog.timeout"
 required="true"
 default="10000"
 cardinality="0"
 type="Integer"
 description=""/>
 </OCD>
 <ns2:properties>
 <ns2:property type="Integer" array="false" name="watchdog.timeout">
 <ns2:value>10000</ns2:value>
 </ns2:property>
 </ns2:properties>
</ns2:configuration>

The service configuration XML message is comprised of the following parts:

• The Object Class Definition (OCD), which describes the service
attributes that may be configured. (The syntax of the OCD element is
described in the OSGi Service Platform Service Compendium 4.3
Specifications, Section 105.3.)

• The properties element, which contains one or more properties with their

associated type and values. The type name must match the name
provided in the corresponding attribute definition identifier (AD id)
contained in the OCD.

The “CONF-V1” application supports the read and update resource operations as
described in the following sections.	

Read	 All	 Configurations	
This operation provides all service configurations for which remote administration
is supported.

• Request Topic:
o $EDC/account_name/client_id/CONF-V1/GET/configurations

• Request Payload:

o Nothing application-specific beyond the request ID and requester
client ID

• Response Payload:
o Configurations of all the registered services serialized in XML

format

	 9	

Read	 Configuration	 for	 a	 Given	 Service	
This operation provides configurations for a specific service that is identified by
an OSGi service persistent identifier (pid).

• Request Topic:
o $EDC/account_name/client_id/CONF-

V1/GET/configurations/pid

• Request Payload:
o Nothing application-specific beyond the request ID and requester

client ID

• Response Payload:
o Configurations of the registered service identified by a pid

serialized in XML format

Update	 All	 Configurations	
This operation remotely updates the configuration of a set of services.

• Request Topic:
o $EDC/account_name/client_id/CONF-V1/PUT/configurations

• Request Payload:

o Service configurations serialized in XML format

• Response Payload:
o Nothing application-specific beyond the response code

Update	 the	 Configuration	 of	 a	 Given	 Service	
This operation remotely updates the configuration of the service identified by a
pid.

• Request Topic:
o $EDC/account_name/client_id/CONF-

V1/PUT/configurations/pid

• Request Payload:
o Service configurations serialized in XML format

• Response Payload:

o Nothing application-specific

Example	 Management	 Web	 Application	
The previously described read and update resource operations can be leveraged
to develop a web application that allows for remote OSGi service configuration
updates via MQTT though a web user-interface.

	 10	

The screen capture that follows shows an example administration application
where, for a given IOT gateway, a list of all configurable services is presented to
the administrator.

When one such service is selected, a form is dynamically generated based on
the metadata provided in the service OCD. This form includes logic to handle
different attribute types, validate acceptable value ranges, and render optional
values as drop-downs. When the form is submitted, the new values are
communicated to the device through an MQTT resource update message.

Remote	 OSGi	 DeploymentAdmin	 Interactions	 via	 MQTT	
An application is installed in the gateway to allow for the remote management of
the deployment packages installed in the OSGi container.

For information about the OSGi Deployment Admin Service, please refer to the
OSGi Service Platform Service Compendium 4.3 Specifications.

	 11	

The app_id for the remote deployment service of an MQTT application is
“DEPLOY-V1”. The resources it manages are the packages deployed in the
OSGi container. Deployment packages are represented in XML format.

The following XML message is an example of a service deployment:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<packages>
 <package>
 <name>esf</name>
 <version>1.0.0</version>
 <bundles>
 <bundle>
 <name>org.hsqldb.hsqldb</name>
 <version>2.2.9</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.linux</name>
 <version>1.0.0.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>javax.bluetooth</name>
 <version>2.1.1</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.protocol.modbus</name>
 <version>1.0.0.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>org.apache.commons.net</name>
 <version>3.1.0.v201205071737</version>
 </bundle>
 <bundle>
 <name>javax.usb.api</name>
 <version>1.0.2</version>
 </bundle>
 <bundle>
 <name>org.apache.servicemix.bundles.protobuf-java</name>
 <version>2.4.1.1</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.protocol.pcn</name>
 <version>1.0.0.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>javax.usb.common</name>
 <version>1.0.2</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.core</name>
 <version>1.0.0.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.api</name>
 <version>1.0.0.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>org.eclipse.kura.web</name>
 <version>1.0.0.SNAPSHOT</version>

	 12	

 </bundle>
 <bundle>
 <name>javax.comm</name>
 <version>2.2.0</version>
 </bundle>
 <bundle>
 <name>org.eclipse.paho.mqtt-client</name>
 <version>1.0.1.SNAPSHOT</version>
 </bundle>
 <bundle>
 <name>edc-client</name>
 <version>2.1.0.SNAPSHOT</version>
 </bundle>
 </bundles>
 </package>
</packages>

The deployment package XML message is comprised of the following package
elements:

• Symbolic name
• Version
• Bundles that are managed by the deployment package along with their

symbolic name and version

The “DEPLOY-V1” application supports the read, start/stop, and install/uninstall
resource operations as described in the following sections.

Read	 All	 Deployment	 Packages	
This operation provides the deployment packages installed in the OSGi
framework.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-V1/GET/packages

	
• Request Payload:

o Nothing application-specific beyond the request ID and requester
client ID

• Response Payload:

o Installed deployment packages serialized in XML format

Install	 a	 Deployment	 Package	
This operation installs a deployment package in the OSGi framework.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-V1/EXEC/install

	
• Request Payload:

	 13	

o The following application-specific properties in addition to the
request ID and requester client ID:

§ A deploy.url property that provides the URL to be used by
the receiving application to download the deployment
package.

§ Alternatively, the deployment package is present in a body
property of the MQTT payload. The deploy.filename
property provides the filename of the deployment package
on the receiving device.

• Response Payload:

o deploy.pkg.name provides the symbolic name of the deployment
package

o deploy.pkg.version provides the version of the deployment
package

Uninstall	 a	 Deployment	 Package	
This operation uninstalls a deployment package.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-V1/EXEC/uninstall

	
• Request Payload:

o deploy.pkg.name provides the symbolic name of the deployment
package

• Response Payload:

o Nothing application-specific beyond the response code

Read	 All	 Bundles	
This operation provides all the bundles installed in the OSGi framework.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-V1/GET/bundles

	
• Request Payload:

o Nothing application-specific beyond the request ID and requester
client ID

• Response Payload:

o Installed bundles serialized in XML format

The following XML message is an example of a bundle:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bundles>
 <bundle>

	 14	

 <name>org.eclipse.osgi</name>
 <version>3.8.1.v20120830-144521</version>
 <id>0</id>
 <state>ACTIVE</state>
 </bundle>
 <bundle>
 <name>org.eclipse.equinox.cm</name>
 <version>1.0.400.v20120522-1841</version>
 <id>1</id>
 <state>ACTIVE</state>
 </bundle>
</bundles>

The bundle XML message is comprised of the following bundle elements:

• Symbolic name
• Version
• ID
• State

Start	 a	 Bundle	
This operation starts a bundle identified by its ID.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-

V1/EXEC/start/bundle_id

• Request Payload:
o Nothing application-specific beyond the request ID and requester

client ID

• Response Payload:
o Nothing application-specific beyond the response code

Stop	 a	 Bundle	
This operation stops a bundle identified by its ID.

• Request Topic:
o $EDC/account_name/client_id/DEPLOY-

V1/EXEC/stop/bundle_id

• Request Payload:
o Nothing application-specific beyond the request ID and requester

client ID

• Response Payload:
o Nothing application-specific beyond the response code

	 15	

Example	 Management	 Web	 Application	
The previously described read, start/stop, and install/uninstall resource
operations can be leveraged to develop a web application that allows for remote
package deployment via MQTT though a web user-interface.

The screen capture that follows shows an example administration application
where, for a given IOT gateway, a list of all deployed packages is presented to
the administrator. It also provides the ability to install/uninstall or update the
packages.

The Bundles tab lists all installed bundles and provides the ability to start and
stop them as shown in the screen capture that follows.

	 16	

