Greg Watson
PTP User/Developer Meeting, Chicago, September 2012

Overcoming Issues Using PTP With Very
Large Projects

© 2012 IBM Corporation

PTP User/Developer Meeting

Application Code

Real Application Parallel Systems Version 11 (RAPS11)

ECMWF’s Integrated Forecasting System (IFS) Benchmark
— Based on an up to date source cycle (CY36R2/Dec 2009)
— Programming model uses MPI + OpenMP
— Languages include F77, F90, F95, C
— ~74MB executable

Source files
— 5900 Fortran files
— 391 Cfiles
— 3800 header files
—~311K lines of code

Model resolutions
— T159L1
» 49 MB dataset, vertical = 91 levels, horizontal = 125 km, time-step = 3600 seconds
—T2047L149
» 15 GB dataset, vertical = 149 levels, horizontal = 10 km , time-step = 450 seconds

© 2012 IBM Corporation

PTP User/Developer Meeting

Building The Code

Uses makefiles, but not directly
Build system in src/scripts directory

Build parameters are set in various places
— ../build/arch
— include/config, include/project_config

Invoke a script called ‘bld_job’ with various arguments
— bld_xxx.job builds individual component ‘xxx’
— bld_all.job builds the entire application by running each build step
— bld_clean.job tries to clean the source directory (doesn’t work well)
— mkabs_fc.job performs the final link, result in ${IFS_DIR}/bin

No output generated to the console
— Output from each build step logged to a file
— If anything goes wrong, need to inspect each log file to locate error

Due to large amount of output, recommended to run bld_all.job a number of times so that
only actual errors are logged

© 2012 IBM Corporation

PTP User/Developer Meeting

Running The Code

» Data and scripts are provided separately to source for various problem sizes

= Can be located anywhere, but needs to know where executable is located
— Manually update script to specify location

= Three scripts provided

—ifs_run_tnnn_ref for a reference run
—ifs_run_tnnn_long for a full run

—ifs_run_tnnn_ttv for debugging with TV

= Scripts are can be run interactively, or submitted via LoadlLeveler

© 2012 IBM Corporation

PTP User/Developer Meeting

Importing Into Eclipse Recommendation

= Make sure heap size is set
to large value (e.g. - Xmx2G)

= Needs to be fixed for Parallel
= Using synchronized Fortran project Package

= Top level directory contains ‘bin’, ‘data’, and ‘src’
— Only synchronize with ‘src’

= Set initial regex filters to exclude build artifacts:
—."\.a, .*\.o, *\list, .*\.Ist

» First synchronize got stuck at 12%
— No progress after %2 hour
— Appeared to be caused by running out of heap
— Increased heap from 384M to 2048M

» Second synchronize took between 5-10 mins depending on network
— Over cable modem, so not particularly fast network

» Subsequent synchronizations take about 30s
— Not great, particularly when building, but usable

© 2012 IBM Corporation

PTP User/Developer Meeting

C/C++ Indexing Recommendation

= Make sure binary files are
not being recognized as C++
headers

» C/C++ Indexer starts immediately synchronization finishes | ® Bug 389521 has been
opened

= Sometimes the indexer appears to hang forever

= Check that it is not trying to index binary files
— RAPS11 had executables called ‘iterator’, ‘set’, and ‘list’
— Had been synched to local machine

The default CDT settings recognize certain file names as headers
— These show up in project view as C++ header files
— There does not seem to be any way to turn this off

Removing these files enabled the C/C++ indexer to be restarted

Indexing RAPS11 took less than a minute

© 2012 IBM Corporation

PTP User/Developer Meeting

Fortran Indexing Recommendation

= Only enable Fortran indexer
if navigation/content assist
required

Indexing is not enabled by default
Must be enabled through Fortran General>Analysis/Refactoring
Indexing takes around 7-10 mins

However, many files are dummies (3000 of 5800)
— Many of these are over 11K lines of code
— So the actual IFS code would take much longer to index
— At least 2-3 time longer

No real issues observer with indexer
— Max heap usage was 1011M

Most files are either .F (fixed form) or .F90 (free form — C preprocessed)
— Refactoring not supported on either format

© 2012 IBM Corporation

PTP User/Developer Meeting

Fortran Editor Recommendation

= Do not edit files over about
5K lines of code

» Bugs 389565 and 386775

Largest source file is 43K+ lines of code (2.8MB) have been opened
— Takes about 60s to open
— Then about 90s to update the editor with analysis/parse information
— Ul is locked during this time
— Every change requires about 90s to update
— Not really usable
— You will need over 1G of heap to do this

Next largest source file is about 15K lines of code (1.5MB)
— About 15s to open
— About 25s to update editor
— Not really usable

Source files around 5K lines of code
— Take a couple of seconds to open and update
— Probably usable

Parse results do not seem to be released when source files are closed
— Very easy to consume all heap, resulting in bad consequences

Fortran 77 (.F) files display syntax error in outline view
— Need to change source form to “Fixed Form — INCLUDE lines ignored®
— This is a bug

© 2012 IBM Corporation

PTP User/Developer Meeting

Fortran Editor

C/C++ - RAPS11/ifs/phys_radi/su_mcica.FO0 - Eclipse SDK
S| Ry o |G B (GG 350 R Qv [[r [O | @ 570 |8 (1) |

Q A y ajjava @C!C++ Tbrortran

= 8 [F) su_mcica.F90 33 0= Out 8% = 0

== A4 . s : ic4 : - — ¢az \{ \s‘ PN #t -
[srtm_taumol28.F90 21 190281E+02_JPRB, ©.194500E+02_JPRB, 198781E+02_JPRB, 9. <Free Form - C Preproc

L™y Project Explorer §3

|| srtm_taumol29.FS0
|| srtm_vrtqdr.F90
| su_c11clim.F90
su_c12clim.F90
|| su_c22clim.F90
2| su_ccl4clim.FS0
c| su_ch4clim.F90
|| su_co2clim.FS0
|| su_gch4clim.FS0
su_gco2clim.F90
su_gozoclim.F90
| su_mcica.FS0
su_n2oclim.F90
| su_no2clim.F90
su_ozoclim.FS0
|.c| su_so4_A1B2000.FS0
su_so4_A1B2010.FS0

.207531E+02_IPRB,
.221125E+02_JPRB,
.240125E+02_JPRB,
.255031E+02_IPRB,
.275781E+02_JPRB,
.292000E+02_IPRB,
.314500E+02_JPRE,
.332031E+02_JPRE,

356281E+02_JPRB,

.375125E402_JPRB,
.401125E+02_JPRB,
.421281E+02_JPRB,
.449031E+02_JPRB,
.470500E+02_JPRB,
.500000E+02_JPRB,
.522781E+02_JPRB,
.554031E+02_JPRB,
.578124E+02_JPRB,
.611124E+02_JPRB,
.636531E+02_JPRB,

.212000E+02_1PRB,
.225781E402_IPRB,
.245031E+02_IPRB,
.260125E+02_1PRB,
.281125E402_1PRB,
.297531E4+02_IPRB,
.320281E+02_IPRB,
.338000E+02_IPRB,
.362500E+02_1PRB,
.381531E402_IPRB,

.428125E+02_JPRB,
.456125E+02_JPRB,
.477781E+02_IPRB,
.507531E+02_JPRB,
.530500E+02_JPRB,
.561999E+02_JPRB,
.586281E+02_JPRB,
.619531E+02_JPRB,
.645124E402_JPRB,

216531E+02_JPRB &

230500E+02_JPRB, 0.

250000E+02_JPRB &

265281E+02_JPRB, @.

286531E+02_JPRB &

303125E+02_JPRB, @.

326125E+02_JPRB &

344031E+02_JPRB, 0.

368781E+02_JPRB &

414500E402_JPRB &

435031E402_JPRB, 9.

463281E402_J1PRB &

485125E4@02_JPRB, @.

515125E+02_JPRB &

538281E+02_JPRB, 9.

570031E+02_JPRB &

594499E4+02_JPRB, 9.

627999E+02_JPRB &

653781E+02_JPRB, @.

@ sU_MCICA

9 2.
) 2.
9 9.
9 2.
) 2.
9 9.
9 9.
() 2.
9 9.
9 9.
9 0.388000E+02_JPRE, Q.
0.407781E+02_JPRB, 0.
9 9.
0 9.
9 9.
9 2.
() 9.
9 9.
9 2.
9 9.
9 9.
() 2.

(SRS RS I RS IR B~ R S I S

&
&
&
&
&
&
&
&
&
&
&,
&,
&
&
&
&
&
&
&
&
&
&

su_so4_A1B2020.FS0
\.c| su_so4_A1B2030.FS0
su_so4_A1B2040.FS0

| su_so4_A1B2050.F90
su_so4_A1B2060.FS0
|.c] su_so4_A1B2070.FS0
| su_so4_A1B2080.FS0
su_so4_A1B2090.F90
\.c) su_so4_A1B2100.FS0
su_so4_obs1920.F90

| su_so4_obs1930.F90
su_so4_obs1940.F90
\.c] su_so4_obs1950.F90
| su_so4_obs1960.F90
su_so4_obs1970.F90
\.c] su_so4_obs1980.F90
su_so4_obs1990.F90

.671281E+02_JPRB, 0.680124E+02_JPRB, 689031E+02_JPRB/)

IF (LHOOK) CALL DR_HOOK('SU_MCICA:PART143',1,ZHOOK_HANDLE)
END SUBROUTINE PART143

END SUBROUTINE SU_MCICA

&3 Progress 83

Updating Fortran editor with new parse information

Updating Fortran editor with new parse information
@ Updating Fortran editor with new analysis information (Waiting)
= Updating Fortran editor with new analysis information (Waiting)

Writable] 1909M of 2031M [E] Updating Fortran edito...e information

© 2012 IBM Corporation

PTP User/Developer Meeting

C/C++ Editor

» Largest source file is 4K+ lines of code
— Takes about a second to open
— Update delay not noticeable

— Codan works in background
— No issues observed

= Just for interest, created 45K line C file

— Still only took about a second to open
— Update delay not noticeable

— Automatically enables scalability mode which disables live parsing
— Disabling scalability mode does not introduce noticeable delays

© 2012 IBM Corporation

PTP User/Developer Meeting

Static Analysis

Running “Show OpenMP artifacts on the whole project
— Takes about 1 minute

Slow, but not a show stopper
— On IFS code it would take much longer

Ul is blocked by dialog while analysis is taking place
— Needs to be modified to work in the background

Recommendation

= Usable, but would become
painful for really large

projects

Finds 487 artifacts, so could be potentially very useful for trying to understand code

Analysis complete.

1 487 OpenMP Artifacts found

Don't show me this again

Declar [2: Fortran Analys L[]l Bookmarks # OpenMP Probl

OpenMP Artifact
END DO

END DO

END MASTER
END MASTER
END MASTER
END MASTER
END PARALLEL

VVVVVVYYVY

Filename
transinv_mdl.FS0
transinv_md|.F90
traj_physics_mod.F90
traj_semilag_mod.FS0
traj_surface_mod.F90
traj_surface_mod.F90
cpgls.F90

LineNo
281
341
289
237
207
250
212

OpenMP Artifa 82 = O
i v

Construct

Pragma

Pragma

Pragma

Pragma

Pragma

Pragma

Pragma

© 2012 IBM Corporation

PTP User/Developer Meeting

Building

Build scripts do not generate output to console
— Error parser will not work

Needed to modify build script
— Add | tee’ to send output to console as well as log files

Errors were being recognized but not matched to a source file
— Could see error listed in Problems view
— No error marker in source file

Compile was using ‘-gsource’ flag to generate listing file

— This also adds ‘a — ' to the start of compiler error messages
— Not being recognized by XLF error parser

= Will be fixed in 8.0.2
— See bug 386572

= Synchronize takes about 30 seconds prior to build
— Annoying, but not a show stopper

— It would be nice to make synchronization smarter so it only happens when really
necessary

© 2012 IBM Corporation

PTP User/Developer Meeting

Running

Recommendation

= |Investigate improvements to
creating launch scripts for

batch schedulers
» Data files and launch scripts in separate directory

» This was synchronized with a separate project

— Large data files were excluded from the synchronize

Took some time to get the correct parameters for job to run

— Some LL installations use different default settings than others
— This was done manually from the command line

— Required frequent edit/submit/check cycles

Painful to do this from within Eclipse

— Need to edit script, wait for sync, open launch config, update script, Run
— No access to commands to check status of job, e.g. ‘liqg —s’

Need to investigate better workflow for creating launch scripts

Need to investigate providing additional information about jobs

© 2012 IBM Corporation

