
© 2012 IBM Corporation

Overcoming Issues Using PTP With Very
Large Projects

Greg Watson

PTP User/Developer Meeting, Chicago, September 2012

© 2012 IBM Corporation 2

Application Code

  Real Application Parallel Systems Version 11 (RAPS11)

  ECMWF’s Integrated Forecasting System (IFS) Benchmark
– Based on an up to date source cycle (CY36R2/Dec 2009)
– Programming model uses MPI + OpenMP
– Languages include F77, F90, F95, C
– ~74MB executable

  Source files
– 5900 Fortran files
– 391 C files
– 3800 header files
– ~311K lines of code

  Model resolutions
– T159L1

•  49 MB dataset, vertical = 91 levels, horizontal = 125 km, time-step = 3600 seconds
– T2047L149

•  15 GB dataset, vertical = 149 levels, horizontal = 10 km , time-step = 450 seconds

PTP User/Developer Meeting

© 2012 IBM Corporation

Building The Code

  Uses makefiles, but not directly

  Build system in src/scripts directory

  Build parameters are set in various places
–  ../build/arch
–  include/config, include/project_config

  Invoke a script called ‘bld_job’ with various arguments
– bld_xxx.job builds individual component ‘xxx’
– bld_all.job builds the entire application by running each build step
– bld_clean.job tries to clean the source directory (doesn’t work well)
– mkabs_fc.job performs the final link, result in ${IFS_DIR}/bin

  No output generated to the console
– Output from each build step logged to a file
–  If anything goes wrong, need to inspect each log file to locate error

  Due to large amount of output, recommended to run bld_all.job a number of times so that
only actual errors are logged

3

PTP User/Developer Meeting

© 2012 IBM Corporation

Running The Code

  Data and scripts are provided separately to source for various problem sizes

  Can be located anywhere, but needs to know where executable is located
– Manually update script to specify location

  Three scripts provided
–  ifs_run_tnnn_ref for a reference run
–  ifs_run_tnnn_long for a full run
–  ifs_run_tnnn_ttv for debugging with TV

  Scripts are can be run interactively, or submitted via LoadLeveler

4

PTP User/Developer Meeting

© 2012 IBM Corporation

Importing Into Eclipse

  Using synchronized Fortran project

  Top level directory contains ‘bin’, ‘data’, and ‘src’
– Only synchronize with ‘src’

  Set initial regex filters to exclude build artifacts:
–  .*\.a, .*\.o, .*\.list, .*\.lst

  First synchronize got stuck at 12%
– No progress after ½ hour
– Appeared to be caused by running out of heap
–  Increased heap from 384M to 2048M

  Second synchronize took between 5-10 mins depending on network
– Over cable modem, so not particularly fast network

  Subsequent synchronizations take about 30s
– Not great, particularly when building, but usable

5

PTP User/Developer Meeting

Recommendation

  Make sure heap size is set
to large value (e.g. –Xmx2G)

  Needs to be fixed for Parallel
Package

© 2012 IBM Corporation

C/C++ Indexing

  C/C++ Indexer starts immediately synchronization finishes

  Sometimes the indexer appears to hang forever

  Check that it is not trying to index binary files
– RAPS11 had executables called ‘iterator’, ‘set’, and ‘list’
– Had been synched to local machine

  The default CDT settings recognize certain file names as headers
– These show up in project view as C++ header files
– There does not seem to be any way to turn this off

  Removing these files enabled the C/C++ indexer to be restarted

  Indexing RAPS11 took less than a minute

6

PTP User/Developer Meeting

Recommendation

  Make sure binary files are
not being recognized as C++
headers

  Bug 389521 has been
opened

© 2012 IBM Corporation

Fortran Indexing

  Indexing is not enabled by default

  Must be enabled through Fortran General>Analysis/Refactoring

  Indexing takes around 7-10 mins

  However, many files are dummies (3000 of 5800)
– Many of these are over 11K lines of code
– So the actual IFS code would take much longer to index
– At least 2-3 time longer

  No real issues observer with indexer
– Max heap usage was 1011M

  Most files are either .F (fixed form) or .F90 (free form – C preprocessed)
– Refactoring not supported on either format

7

PTP User/Developer Meeting

Recommendation

  Only enable Fortran indexer
if navigation/content assist
required

© 2012 IBM Corporation

Fortran Editor

  Largest source file is 43K+ lines of code (2.8MB)
–  Takes about 60s to open
–  Then about 90s to update the editor with analysis/parse information
–  UI is locked during this time
–  Every change requires about 90s to update
–  Not really usable
–  You will need over 1G of heap to do this

  Next largest source file is about 15K lines of code (1.5MB)
–  About 15s to open
–  About 25s to update editor
–  Not really usable

  Source files around 5K lines of code
–  Take a couple of seconds to open and update
–  Probably usable

  Parse results do not seem to be released when source files are closed
–  Very easy to consume all heap, resulting in bad consequences

  Fortran 77 (.F) files display syntax error in outline view
–  Need to change source form to “Fixed Form – INCLUDE lines ignored“
–  This is a bug

8

PTP User/Developer Meeting

Recommendation

  Do not edit files over about
5K lines of code

  Bugs 389565 and 386775
have been opened

© 2012 IBM Corporation

Fortran Editor

9

PTP User/Developer Meeting

© 2012 IBM Corporation

C/C++ Editor

  Largest source file is 4K+ lines of code
– Takes about a second to open
– Update delay not noticeable
– Codan works in background
– No issues observed

  Just for interest, created 45K line C file
– Still only took about a second to open
– Update delay not noticeable
– Automatically enables scalability mode which disables live parsing
– Disabling scalability mode does not introduce noticeable delays

10

PTP User/Developer Meeting

© 2012 IBM Corporation

Static Analysis

  Running “Show OpenMP artifacts on the whole project
–  Takes about 1 minute

  Slow, but not a show stopper
– On IFS code it would take much longer

  UI is blocked by dialog while analysis is taking place
–  Needs to be modified to work in the background

  Finds 487 artifacts, so could be potentially very useful for trying to understand code

11

PTP User/Developer Meeting

Recommendation

  Usable, but would become
painful for really large
projects

© 2012 IBM Corporation

Building

  Build scripts do not generate output to console
– Error parser will not work

  Needed to modify build script
– Add ‘| tee’ to send output to console as well as log files

  Errors were being recognized but not matched to a source file
– Could see error listed in Problems view
– No error marker in source file

  Compile was using ‘-qsource’ flag to generate listing file
– This also adds ‘a – ’ to the start of compiler error messages
– Not being recognized by XLF error parser

  Will be fixed in 8.0.2
– See bug 386572

  Synchronize takes about 30 seconds prior to build
– Annoying, but not a show stopper
–  It would be nice to make synchronization smarter so it only happens when really

necessary
12

PTP User/Developer Meeting

© 2012 IBM Corporation

Running

  Data files and launch scripts in separate directory

  This was synchronized with a separate project
– Large data files were excluded from the synchronize

  Took some time to get the correct parameters for job to run
– Some LL installations use different default settings than others
– This was done manually from the command line
– Required frequent edit/submit/check cycles

  Painful to do this from within Eclipse
– Need to edit script, wait for sync, open launch config, update script, Run
– No access to commands to check status of job, e.g. ‘llq –s’

  Need to investigate better workflow for creating launch scripts

  Need to investigate providing additional information about jobs

13

PTP User/Developer Meeting

Recommendation

  Investigate improvements to
creating launch scripts for
batch schedulers

