Dr. Tom Ritter
Eclipse Con Europe, Papyrus Summit, 2014
COMMON CHALLENGES IN SOFTWARE ENGINEERING

- Inconsistency, low degree of automation, insufficient common terminology
- Complexity and costs
- Decoupled software tools
- Produced data remains proprietary and depends on specific tools
ModelBus® is a model-driven tool integration framework which allows you to build seamlessly integrated tool environments for your development process.

- ModelBus® connects your tools – commercial off the shelf or in-house tools
- ModelBus® helps automating your development processes
- ModelBus® uses SOA principles and well established standards
General Concept

- Lifecycle Tools are needed for creative work
- Process Enactment controls the development process
- Core services are needed to operate the ModelBus
- Modeling Services provides back-end functionality for automation
Architecture

- Tools are connected via a ModelBus Adapter
- Slight modification of existing tools instead of introducing new tools
- Services can be easily created via ModelBus service interfaces supported by the ModelBus Development Kit
- Workflows can be orchestrated and will be triggered by ModelBus events
- Repositories store relevant artefacts (e.g. models, code, documents) via standardised interfaces
Selection of Connected Tools

- Eclipse-based Tools
 - Papyrus, ProR, …
- Rational Software Architect
- Doors
- Rhapsody
- Simulink
- Microsoft Office (Word, Excel)
- Sparx Enterprise Architect
- AVL InMotion
- Modelling Services
 - QVT, ATL, OCL, Metric Computation, Report Generation, Model Repository
- Traceability with Traceino
- Requirements Engineering with Requino
- OSLC-Compatibility
- SVN, Git
Avoiding merge conflicts

- Locking of parts of the model
- Interactive highlighting of locked model parts
- Interactive modelling
FOKUS!MBT – Customizing Papyrus for MBT
Git Integration

ModelBus

ModelBus Server

ModelBus Server Application

ModelBus Git Repository

Conflict Resolution in ModelBus Clients

ModelBus Client

“Central” Repository

Developer Git Repository 1

Developer Git Repository 2

Developer Git Repository N

Read/write

Sync

Sync

Sync

Sync
As product and consulting company for the automotive domain B&M is specialized in systems engineering, development and testing of complex electronic and mechanical systems. Within the case study B&M will appear as developer of automotive driver assistance software.

Traffic Sign Recognition System
- Different hardware and operating systems
- Different countries with variety of laws and regulations
- Different directions of traffic
- Different sets of customer specific functionalities

http://www.varies.eu/
VARIES CASE STUDY - EXISTING PROCESS

- Requirements Management using Doors
- Architecture using VISIO
- Design using VISIO
- Implementation using Eclipse
- Testing using CTE XL Professional and Messina
VARIES CASE STUDY - PROCESS AIMED AT

- Requirements Management using Doors & Meran
- Architecture using Artisan Studio (or Papyrus)
- Analysis (QFD, FMEA, Risk) using Requino
- Design using Artisan Studio (or Papyrus)
- Implementation using Eclipse
- Variability Management using pure::variants
- Testing using CTE XL Professional and Messina
VARIES CASE STUDY - PROPOSED REALIZATION

OSLC RM & Meran VM via OSLC REST

CVL

pure::variants VM via ModelBus

UML & OVM via ModelBus

CTE XL & Files Via ModelBus

Analysis (QFD, FMEA, Risk) using Requino

UML & OVM via ModelBus

UML & OVM via ModelBus

Files (p::v) via ModelBus

transformations

traces
CONSISTENT VARIABILITY MANAGEMENT HANDLING

- Requirements Management using Doors & Meran
- OSLC RM & Meran VM via OSLC REST
- UML & OVM via ModelBus
- CVL
- Analysis (QFD, FMEA, Risk) using Requino
- UML & OVM via ModelBus
- Pure::variants VM via ModelBus
- CTE XL & Files Via ModelBus
- Files (p::v) via ModelBus

Transformations:

Traces:
CONSISTENT VARIABILITY MANAGEMENT HANDLING

Meran → OVM → pure::variants

traces and bidirectional conservative transformations

CVL
CROSS FRAMEWORK TRACEABILITY

OSLC RM & Meran VM via OSLC REST

pure::variants VM via ModelBus

CVL

Analysis (QFD, FMEA) using Requino

UML & OVM via ModelBus

CTE XL & Files Via ModelBus

UML & OVM via ModelBus

Files (p::v) via ModelBus

transitions

traces
CROSS FRAMEWORK TRACEABILITY
Example Workflow

MODELBUS®

Eclipse/Papyrus

UML concept space

Sparx Enterprise Architect

Simulink concept space

mapping of the concepts

Simulink

UML

Block

Class

Port

Port

Line

Information Flow

Matlab Simulink

Fraunhofer FOKUS
Benefits

- ModelBus®
 - connects tools and data coming from different teams
 - improves consistency in the development process
 - makes you independent of tool providers and prevents vendor lock-in
 - automates tedious tasks in your development

- ModelBus®
 - is extensible and customisable
 - Basic functionality is free to use and Open Source
 - A number of pre-existing tool adapters are available

ModelBus®: http://www.modelbus.org
YouTube Channel: http://www.youtube.com/user/ModelBusOrg

We want to move ModelBus Core and TeamProvider to Eclipse
Dr. Tom Ritter
Director System Quality Center

Fraunhofer Institute
for Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
Tel: +49 (30) 34 63 – 7278
Fax: +49 (30) 34 63 – 99 7278

tom.ritter@fokus.fraunhofer.de
SQC: http://www.fokus.fraunhofer.de/go/sqc
ModelBus®: http://www.modelbus.org
YouTube Channel: http://www.youtube.com/user/ModelBusOrg