
Model Transformation Exercices Date 19/10/2018

Page 1

Context of this work

The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project
(http://www.modelware-ist.org/).

Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on
techniques known as Model-Driven Development (MDD).

To achieve the goal of large-scale adoption of these MDD techniques,
MODELWARE promotes the idea of a collaborative development
of courseware dedicated to this domain.

The MDD courseware provided here with the status of open source
software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

Model Transformation Exercices Date 19/10/2018

1

2 Description of the Exercise

Short Name: UML2Java

Full Name: From UML Class Diagrams to Java Classes

Short Description: The UML to Java exercise requires a transformation of a UML model to a
simplified Java model. The Java model holds the information for the creation of Java classes,
especially what concerns the structure of these classes, namely the package reference, the attributes
and the methods.

Tools: The required transformation may be implemented in any model transformation language. The
description of the exercise in this document assumes that metamodels will be expressed in KM3 [2]
and ATL [3] will be used for writing the transformation program. ATL engine can be downloaded from
GMT web site [3].

Source Metamodels:
The source metamodel is a simplified version of the UML metamodel standardized by OMG [1]. It is
shown in Figure 1.

Figure 1 Simplified UML metamodel

Target Metamodels:
The target metamodel captures some characteristics of Java classes. A possible target metamodel of
Java (see Figure 2) consists principally of JavaElements which all have a name. A JavaClass has
Methods and Fields and belongs to a Package. Methods, Fields and JavaClasses are subclasses of
Modifiers and therefore indicate whether they are public, static or final. JavaClasses and Methods
declare with the isAbstract attribute whether they are abstract or not. PrimitiveTypes and JavaClasses
are Types. A Method has a Type as return Type and parameters of certain Types. A Field has also a
Type.

Page 2

http://www.modelware-ist.org/bb2Forum/index.php

Model Transformation Exercices Date 19/10/2018

Figure 2 Simplified Java metamodel

Tasks:
1. Express the source and target metamodels in the KM3 language.
2. Write a transformation program that transforms UML models conforming to the source

metamodel to Java models conforming to the target metamodel. The informal description of
the transformation rules is the following:

Rule 1. For each UML Package instance, a Java Package instance has to be created.

o Their names have to correspond. However, in contrast to UML Packages which hold
simple names, the Java Package name contains the full path information. The path
separation is a point “.”.

Rule 2. For each UML Class instance, a JavaClass instance has to be created.

o Their names have to correspond.

o The Package reference has to correspond.

o The Modifiers have to correspond.

Rule 3. For each UML DataType instance, a Java PrimitiveType instance has to be created.

o Their names have to correspond.

o The Package reference has to correspond.

Rule 4. For each UML Attribute instance, a Java Field instance has to be created.

o Their names have to correspond.

o Their Types have to correspond.

o The Modifiers have to correspond.

o The Classes have to correspond.

Page 3

Package JavaClass

+isAbstract :Booleanpackage+

classes+

*

Field

owner+

fields+

*

Method

+isAbstract :Boolean

PrimitiveType

owner+

methods+
*

Type

*

parameters+
*

*

type+

*

type+

JavaElement

 +name : String

Modifier

+isPublic :Boolean

+isStatic:Boolean

+isFinal :Boolean

http://www.modelware-ist.org/bb2Forum/index.php

Model Transformation Exercices Date 19/10/2018

Rule 5. For each UML Operation instance, a Java Method instance has to be created.

o Their names have to correspond.

o Their Types have to correspond.

o The Modifiers have to correspond.

o The Classes have to correspond.

3. Test the transformation program with a sample input UML model.

Guidelines: First try to write the transformation program by yourself. If you have difficulties then you
can consult the solution given further in this document. Remember that there is no single right solution.
It is always useful to compare your solution with other solutions.

3 An Example Solution

Example ATL Code:
This ATL code for the transformation of a UML to Java consists of several functions and rules. Among
the functions, it is important to mention getExtendedName which recursively explores the namespace
to concatenate a full path name. Concerning the rules, there are remarks necessary respective the
rule O2M. This rule shows how to access sets via OCL expressions. For simplicity of implementation,
the (return) type of a Java Method is the first parameter of an UML Operation. Some minor details,
such as modifiers, are not yet fully implemented.
module UML2JAVA;
create OUT : JAVA from IN : UML;

helper context UML!ModelElement def: isPublic() : Boolean =
self.visibility = #vk_public;

helper context UML!Feature def: isStatic() : Boolean =
self.ownerScope = #sk_static;

helper context UML!Attribute def: isFinal() : Boolean =
self.changeability = #ck_frozen;

helper context UML!Namespace def: getExtendedName() : String =
if self.namespace.oclIsUndefined() then

''
else if self.namespace.oclIsKindOf(UML!Model) then

''
else

self.namespace.getExtendedName() + '.'
endif endif + self.name;

rule P2P {
from e : UML!Package (e.oclIsTypeOf(UML!Package))
to out : JAVA!Package (

name <- e.getExtendedName()
)

}

rule C2C {
from e : UML!Class
to out : JAVA!JavaClass (

name <- e.name,
isAbstract <- e.isAbstract,
isPublic <- e.isPublic(),
package <- e.namespace

Page 4

http://www.modelware-ist.org/bb2Forum/index.php

Model Transformation Exercices Date 19/10/2018

)
}

rule D2P {
from e : UML!DataType
to out : JAVA!PrimitiveType (

name <- e.name,
package <- e.namespace

)
}

rule A2F {
from e : UML!Attribute
to out : JAVA!Field (

name <- e.name,
isStatic <- e.isStatic(),
isPublic <- e.isPublic(),
isFinal <- e.isFinal(),
owner <- e.owner,
type <- e.type

)
}

rule O2M {
from e : UML!Operation
to out : JAVA!Method (

name <- e.name,
isStatic <- e.isStatic(),
isPublic <- e.isPublic(),
owner <- e.owner,
type <- e.parameter->select(x|x.kind=#pdk_return)->

asSequence()->first().type,
parameters <- e.parameter->select(x|x.kind<>#pdk_return)->
asSequence()

)
}

rule P2F {
from e : UML!Parameter (e.kind <> #pdk_return)
to out : JAVA!FeatureParameter (

name <- e.name,
type <- e.type

)
}

References

[1] OMG Unified Modeling Language (UML), version 1.4 (formal/03-03-01), 2002,
http://www.omg.org/technology/documents/formal/uml.htm

[2] KM3 User Manual. http://eclipse.org/gmt

[3] The ATL Development Tools. http://eclipse.org/gmt

Page 5

http://eclipse.org/gmt
http://eclipse.org/gmt
http://www.omg.org/technology/documents/formal/uml.htm
http://www.modelware-ist.org/bb2Forum/index.php

	
	2 Description of the Exercise
	3 An Example Solution

