Getting Started with Papyrus for

RealTime v1.0

1. Introduction

This tutorial will show the creation of a simple model using Papyrus for Real Time
version 1.0 (based on Eclipse Oxygen).

As a precondition to going through this tutorial, you must have Papyrus for Real
Time installed.

Please see https://wiki.eclipse.org/Papyrus-RT/User#Installation for information on
installing Papyrus for Real Time.

Note: The instructions in this tutorial are illustrated using Linux. Steps and images may
differ slightly if the installation is done on a different operating system (both Windows
and Mac OS are supported for developing models). Some of these differences have
been indicated when known and some may be missing.

This exercise will show the creation of a project and model and how UML-RT concepts
can be used to easily create the application's structure and behavior.

At its base, a UML-RT model consists of capsules (UML active classes with composite
structure) that communicate through ports defined by protocols (collaboration
specifications) These protocols specify the messages (signals) that can be exchanged
between capsules, as well as their payloads. Hierarchical state machines are used to
represent the behavior of capsules, where transitions between states are triggered by
messages received on the capsule's ports.

If you are not familiar with UML-RT and want to know a bit more, you should take a
look at the Papyrus-RT Overview page (note that the Papyrus-RT-specific visual
elements are not shown on that page, but the concepts stand).

The model that will be created as part of this tutorial is a simple "PingPong" model. In
this model, implemented using UML-RT, two players will be playing an eternal game of

ping pong.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

https://wiki.eclipse.org/Papyrus-RT/User#Installation
https://www.eclipse.org/papyrus-rt/content/overview.php

Getting Started with Papyrus for

RealTime v1.0

It is a very simple model that will show how a UML-RT model is constructed. Each
player will be portrayed using UML-RT capsules and a UML-RT protocol will be used to
define how the ball is exchanged between players through ports on each player
capsule.

Note: For brevity, "Papyrus-RT," the short form of "Papyrus for Real time," will be used
throughout this document.

2. Starting Papyrus for Real Time

Start Papyrus for Real Time. This is typically done by double-clicking on its executable
(on some platforms, the executable may be found under the "papyrusrt" folder).

As it starts, the launcher will display the Papyrus for Real Time splash screen.

B50000

PAPYRUS
FOR
REAL-TIME

W 1.0 (OxvyGEMN)

JE)IILI

©;

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

2.1 Creating a workspace

Workspaces are Eclipse's way of creating development environments for various tasks.
You can use workspace for different projects, different aspects of a project, or different
tasks.

1. After the launch splash screen is dismissed, you will be asked to specify a workspace.
You can opt for the provided location or substitute your own.
2. Click on [Launch] to continue.

™ Eclipse Launcher

Select a directory as workspace

Papyrus for Real-Time uses the workspace directory to store its preferences and development artifacts.

r I' 1 o
G Eles [l/home/parallels/Documents/workspace-rt] * | | Browse...

(] Use this as the default and do not ask again

» Recent Workspaces

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

2.2 The workspace

You are now presented with the Eclipse workspace for Papyrus-RT

: M=k e - 35N v JE L LS v v ! - > Quick Access =i)

io ProjectExpl 2| = O = 0

O s -

Projects
and Files

Editor
% ModelExplo 2 = O (diagrams)
FEFEEARBE

-

No Model Available

Model
Explorer

&= Outline 2 = "

An outline is not available. ||] Properties 2 J Model validation € Documentation 5’ References - Code Snippet =) i G =

Properties are not available. _
Properties of

Diagram selected element
Outline

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

3. Create a Papyrus for Real Time Project
containing a UML-RT model.

Papyrus for Real Time is a Domain-Specific Modeling Language (DSML) tool based on
Papyrus. We will use the Papyrus Project creation wizard to create a project
configured for Papyrus for Real Time.

3.1 Select File -> New -> Papyrus Project

File Edit MNavigate Search Project Run Window Help
> Papyrus Project
Open File... Project...

@ Open Projects from File System... Folder

Papyrus Model

Other...

3.2 Select the architecture context for the model

The architecture context defines the type of model you will be using to build you
application. Papyrus can support various architecture model and provides extension
points to add more if needed.

In the displayed dialog:

1. Select the UML-RT architecture context

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

2. Notice that the by clicking on UML-RT, both the architecture context and the viewpoints
change to the ones required for UML-RT modeling.
3. Click on [Next].

You will notice that there are two "UML-RT Modeling" viewpoints. The difference
between the two is in the amount of information displayed to the user, e.g., in the

model explorer. Most users would typically only need to use the "Basic" variant. Some
"super-users" and "toolsmiths" could benefit from the added information.

In the context of this tutorial, we will stay with the "Basic UML-RT Modeling Viewpoint."

: New Papyrus Project

Select Architecture Context ..r—\ﬁ’

Select the architecture context(s) and viewpoints to apply to D
the Papyrus model

Architecture Contexts:

~ @ &' Software Engineering

ETUMLRT ‘ ﬂ.ﬂmmmL

o UML-RT ADL
1 4 advanced LHbITMndningU‘lm‘pnlnt
Architecture Viewpoints: ‘u e et e
‘ﬂﬁ!‘-nm.rinnll;ms

4 = software Design

< Back

r
b

Cancel Finish

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

3.3 Define the project

You can now define the project's name and its location, as well as the name of the
model file that will be created.

1. Enter the name for the project. This project can hold multiple artefacts and will contain a
Papyrus model by default. For this tutorial, we will use the name "PingPong."

2. As you type the name of the project, you will note that the model file name is filled with
the same information. It is common to to use the same name for both. If you do need to
have a different name for the model file, you can change it from the "Model file name"
entry field.

3. By default, the project will be created in the current workspace. You can, however,
select an alternative location if, for example, you wish to store your project under source
control.

4. Click on [Next]

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

—\;’
Choose your project path and the model name b

Use default location @
Location: | fhome/parallels/Documents/workspace-rt/Pir Browse...

Model file name:

=0

Project name;

Cancel Finish

3.4 Provide model initialization information

There is more information that can be provided to create a useful model.

1. The "Root model element" is a representation of the model itself. For this tutorial, and for
consistency, we will name it "PingPong."

2. Typically, for UML-RT modeling, we would not start from a diagram. In addition, the two
basic diagrams for UML-RT will be created automatically as part of the modeling
workflow. As such, we will not select any "Representation Kind."

3. The wizard let's you select a template of the model you are creating, select "UML-RT for
C++"

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0 n

Getting Started with Papyrus for

RealTime v1.0

4. We will also not select to apply any profile. The project/model creation wizard
automatically applies those that are required to create a Papyrus-RT model. This part of
the dialog could be used to add other profiles that deployed in your environment or that
are provided by other add-ons.

5. Click on [Finish] to create the model.

There are three template that you can select in the v1.0 version of Papyrus-RT:

1. UML-RT for Structural Modeling: only provides only support for capsule, ports, and
protocol. Capsule state machines are not created by default.

2. UML-RT basic: provides all UML-RT capabilities, including automatic creation of state
machines to express the behaviour of capsules. However, no target language is set for
code generation

3. UML-RT for C++: provides all the capabilities to create UML-RT models that can
generate C++ code.

Note that these templates build on top of each other, so even if you select one of the
first two template, you can still add the profiles and libraries to get to the "UML-RT for
C++" configuration later, once you are in the tool.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for
RealTime v1.0

Mew Papyrus Project

Initialization infoermation B
Select root element name and diagram kind
Root model element r@e:
PingPong
select a Dy m Kind:
Dia g Mame Quantity

You can load a template:

UML-RT for structural modelling |

CF UML-RT basic
UML-RT for C++ e I
Browse Reg@Xﬂ-mes

Browse Workspace

)

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

3.5 Project and Model Created
You now have an empty model ready to be populated!

"'Note/Tip''": Many Papyrus-RT users like to have the Code Snippet View displayed
along with the Properties View. This can be accomplished by dragging the Code
Snippet View to the right of the Properties View.

1\ Projectexpl @ = O | -2 PingPong.di i | =g
Bl {E.- = General Related Views
' PingPong 3 Private editor setting
Project Remember last
ne [= UEl lasi a
Explorer
guag _ List of
Name Version
UML Real-Time 1.1.0 Model Dlagrams
ocde
B modelExplo®t = B | o (Notation views)
B - ~_Information -
ER@EEAEEIRES Internationalization Motation Views
B Private storage
"—'F‘MEI Use ernationalization View Context
Explorer Language n_U
A3
3 Welcome
= Outline & = g
Editor
Outline
Mo outline For this editor

GETTING STARTED WITH PAPYRUS FOR REALTIME V1.0

Getting Started with Papyrus for

RealTime v1.0

4. Our project: PingPong

For this tutorial, we will be creating a simple model of a ping pong game, with two
players.

The system will consist of two capsules ("active classes) that will communicate to show
whose turn it is to hit the ball. Because the system is run by computer, no errors will be
made playing so the game could go on forever... To prevent this, we will add a check to
ensure that the game only runs for a pre-determined number of exchanges.

So let's get started!

5. Create a protocol

Let's start by determining how the PingPong ball will go from one player to the other.
To do this, we can think of the ping pong ball as a message to the other player to which
they need to reply (hit the ball back). In UML-RT, the structure that governs the
messages that can be exchanged between entities (players in this case) is a protocol.

Protocols contain protocol messages that define how messages can be sent and
received between model elements (called "Capsules" in UML-RT - more on that later).
These protocol messages can be incoming, outgoing, or symmetrical (i.e., both ingoing
and outgoing).

In the case of protocols that are not purely symmetric, i.e., that have either or both
incoming and outgoing messages, there is also a need for the concept of conjugation,
i.e., of reversing the role of the protocol, a concept that will be addressed further when
used later in this tutorial.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

In the case of this Getting Started tutorial, we could create a symmetric protocol where
there would be a single symmetrical protocol message called, for example, "ball".
However, to better explore the concept of protocols, we will define our "PingPong"
protocol to have one outgoing protocol message called "ping" and one incoming
protocol message called "pong".

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

5.1 Create the protocol
The first step is to create the protocol itself.

1. Right-click on the "PingPong" model in the Model Explorer and select "New UML-RT
Child > Protocol"

2. The name of the protocol is highlighted, name the protocol "PingPongProtocol" and hit
return.

You can also see the protocol and its messages in the Properties view.

You now have a "protocol" in the Model Explorer.

,%_ Model Explorer &2] = W

T AEBE S
Mavigakte

Related Views

r Bz eModell

MNew Child
¥ Bz eModell = _

New UML-RT child L% Capsule

ew Diagram > Class

& New Table > Enumeration

™ Madel Explorer & = U | [rraperties @ Model validation 5 References 7 Code Snippet View T = =0
ETERC] == wProtocols PingPangPratocal
- L FingFang P . r
2 sFrokecobs PingPengPretoool UML-RT Mame | FingFangFratacal SUpertype <Undefined= =|2
* B ool iverin LML BT-RTS LML -
» B il ibvans AnsicL ity Comments Dulmessages = & | |- -
Frofile
Advanced @
In messages = LAl TSR
&= Cutline & = 0 In-out messages i e

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

5.2 Add protocol messages to the protocol

As mentioned previously, a protocol may contain many different "protocol messages"”
that specify "operations" and their associated data.

Our protocol will "ping" its opponent and, in return, will respond to a "pong". This tells
us that there will be a "ping" outgoing protocol message and a "pong" incoming
protocol message.

Tip: Protocols should be defined from the client's perspective. In practice, this means
that the provider of the service defined by the protocol will have their ports conjugated
and the client's ports will by un-conjugated. This makes sense as there will typically be
more clients than service providers, so adopting this best practice will reduce the
number of ports that need to be conjugated.

In the case of this model, it does not matter as there is no distinct service provider or
client. After all, in a game of ping pong, both sides "serve"! For this tutorial, we will
consider that the player that starts the game will be sending the "ping" and will
therefore be the "server" / "Service Provider."

1. Right-click on the protocol

2. Select to create a "New UML-RT Child > InProtocolMessage".

3. The protocol message is created and its name is ready to be edited in the model
explorer in the model explorer .

4. Rename the protocol message to "ping" (remember, as the server, the port will be
conjugated, so it will have to be the opposite of the action we expect, so incoming).

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

MNavigate

New Relationship o
New UML-RT child eﬁr.:::-t-:::. colMessage
B New Diagram InFrotocolMessage

B New Table InOutProtocolMess i1ge

in InProtocolMessage1 ()

~E=a PingPong
@ = «Protocol» PingPongProtocol

5.3 Add the "pong" Protocol Message

To create the "pong" message, use the same process as for the creation of the "ping"
protocol message, above, except that you will instead create a "ProtocolMessageOut"
and name the protocol message "pong"

1. Right-click on the PingPong protocol and select "New UML-RT Child >
OutProtocolMessage"

2. Rename the resulting protocol message to "pong"

3. You now have a "pong" protocol message in addition to "ping".

*E=a PingPong

v == «Protocol» PingPongProtocol
out pong ()

*Z in ping ()

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

5.4 The "PingPong" protocol is now complete

The protocol and its protocol messages can now be seen in both the Model Explorer
and the Properties view.

& Model Explorer £2 S B || Pproperties 2 | J Model validation 5 References Code Snippet View ™M ¥ <= 8
E T ®E % B % ~ | =«Protocol» PingPongProtocol
&= PingPong 7) ;
supertype <Undefined> | =
- == «Protocol» PingPongProtocol ||iekkedidd Mame PingPongProtocol | pertyp
' UML

: f:ut_pung 0 Out messages = CIE AR

“Z in ping () Comments
» Ea «ModelLibrary» UMLRT-RTS Profile Z*out pong ()
» B2 eModelLibrary» AnsiCLibrary Advanced

In messages = COIE AR
*Z in ping ()

6. Defining the Tutorial's "PingPong" System's
Structure

Now that we have a protocol, we can move on to creating the structure of the
"PingPong System."

We will need to create three capsules for this tutorial model:

+ Two capsules that will be representing the two players: "Pinger" ("player 1") and
"Ponger" ("player 2").
We will be creating two capsules to highlight some aspects of the communication
mechanisms, especially related to how ports are used with asymmetric protocols. If we
had a symmetric protocol, we could simply use two instances of the same capsule, but
that would be a less interesting model for a tutorial. Also note that, in this example, the

two capsules will be slightly different as one has the added responsibility to start the
game

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

+ A top capsule representing the complete system ("Top")
In UML-RT, the building blocks are capsules and there is always a top capsule that
represents the system to be built. The complete set of capsules that are required to

implement the system's functionality are then included by the containment hierarchy
from this top capsule.

7. Create the Pinger capsule

This capsule will represent the starting player in the game. As such, it will be
responsible for sending the first "ball" (message). It will also have to react when
receiving the ball from the other player.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.1 Create the Pinger ("player 1") capsule
Let's start by creating the Pinger capsule.

1. Right-click on the PingPong model in the Model Explorer and select "New UML-RT
Child > Capsule"

2. After the capsule is created, it's name is selected for edition, name it "Pinger"

- - —_

r%‘_ Model Explorer £2] :

EEEEE Y= 0

- g PinFe——~ Related Views
' | 'avigate

[properties View
N« w Child > % Model Explorer
Ne - Relationship » J Model validatio
New UML-RT Child . . Capsule

¥ New Diagram > Class

& New Table > Enumeration

Package

*EaPingPong » == «Protocol» PingPongProtocol
» == «Protocol» Pge®ongProtocol + | “«Capsule» Pinger
-[P vl dadt e FIAAE AT ATE

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.2 Look at the Pinger capsule and open it's diagram
Now that we have a capsule, let's have a look at what it contains and at its diagram.

1. Expand the Pinger capsule in the model explorer by clicking on the triangle at the
beginning of its Model Explorer entry. You will notice that there is already a contained
element: Pinger's diagram link. In Papyrus-RT, every capsule has a capsule diagram,

this link is a quick way to open it
2. That diagram link is also accessible from the "Editor" under the View heading.

*EaPingPong

¥ == «Protocol» PingPongProtocol

- _“«Capsule» Pinger
B Pinger

Notation Views

[Filter

® v

Pinger

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.3 Open Pinger's capsule diagram

To do this, simply double-click on either of the diagram described in the previous step
(or single-click on the blue textual link in the editor view list)

One open, you will see:

1. The representation of the Pinger capsule. It does not contain much right now, but we
will work on that in this tutorial.

2. A editor tab is added at the bottom of the editor. This is useful when you have multiple
diagram open so you can easily navigate between them

3. Atool palette providing you with the various tools that are relevant when working on a
diagram in the context of the capsule's structure (in this case).

~¥ *PingPong.di &2 = B8
< Palette I
heaeil-B.
= Capsule Structure

O Port

[* Pinger

I Capsule Part
Pinger # Connector

@ Capsule @
@ Tool

Palette

K Editor tab@

i3 welcome B3 Pinger &2

7.4 Add an external port to Pinger

In order to be able to communicate, Pinger will need an external port through which it
can send messages to other capsules. Let's add this port now.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

Click on "Port" in the tool palette.

Click on the right border of the Pinger capsule.

In the resulting dialog, select "Port with Existing Protocol."

In the resulting dialog, expand the "PingPong" model entry and select the
PingPongProtocol that was created earlier and click [OK] to close the dialog.

The port name will be set for editing on the diagram, name the port "pingPort" and hit
Enter.

6. Since we have decided that Ping would be the "server" capsule, we also have to change
the conjugation of its port. To do so, look in the Properties view just below the Editor,
and make sure that the "UML-RT" tab is selected

Click on the box to the left of "Is conjugated.”

8. When the port is conjugated, you will notice that its graphical element will change from
being all black to getting a white fill, graphically showing the conjugation state.

e =

o

N

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

@gl’ungd\ﬂ- ==
i Palette L4
Ik
o port
= Capsule Part
‘@/ # Connector

(@ welcome B Pinger 2

“# *PingPong.di 3 =a
i Palette v
o 3
SR = Capsule Structure -
o port
= Capsule Part
+ Connector
@ welcome inger %
~¥ *PingPang.ci 53 =5
% Palette 3
= Finger |

& Capsule Structure B
a port

select Protocol
= Capsule Part
Connector

Filter:

- & PingPong
== «Protocol» PingPongProtocol
1" B3 «ModelLibrarys UMLRT-RTS
@& welcome inger &
~? *PingPong.di Sﬂ = A
2% Palette 3
Qi -u-
= Capsule Structure <«
«* Pinger o Port
= Capsule Part
@ & Connector

(g [pinorort}

= Properties {6 Y Modelvalidation #” References (= Code Snippet View [# &

o «RTPork» pingPort : ~PingPongProtocol
I

UML-RT Name | pingPort
umML .

Protocol "— «Protocol» PingPongProtocol
Comments
Profile Kind © External Behavior () Internal Behavior
Style Replication INone (1)]
Appearance
Rulers And Grid jugated Is service Is wired
Advanced Is behavior Is publish (") Is notification

Conjugated port

::; Unconjugated port

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0 28]

Getting Started with Papyrus for

RealTime v1.0

7.5 Add a log port

In order to make sure that the model actually runs correctly, we will need to display
some information to the user. The Papyrus-RT runtime provides a logging service that
allows models to print out information to the standard output (e.g., the screen). In the
current version, it only does this to stdout, but this capability is extensible to use other
output targets.

So all that is needed to be able to log event to the screen is to add a log port to the
capsule.

1. Select the Port tool and create a port in the middle of the capsule

2. In the resulting dialog, select the "Log" entry

3. Leave the name as is. You have now create a log port through which you can print
messages. We will see how to use it when we add the behaviour to the capsule.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

(&= Capsule Structure
o Port
&= Capsule Part

[o* Pinger

& Connector

Frame
Ll:llg
Timing

Port with existing Protocol...
FPort with new Protocol...

\ [* Pinger

; = 2l pingPort

7.6 Create Pinger's state machine

As mentioned, the behaviour of a capsule is represented by a state machine, but one is
not provided by default as some capsules may not need to have behaviour. Examples
of capsules not needing behaviour are for container capsules, such as "Top", and some
patterns, such as dynamic forwarding.

1. Right-click on the Pinger capsule in the Model Explorer and select "New UML-RT Child
> StateMachine" to create the state machine.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

2. The state machine is created and its diagram is available from the Editor's View list

(click on the "Welcome" tab at the bottom of the editor area to display the information
view).

- _“wCapsule» Pinger

Mavigate
o «RTPort» ping :

Mew Child
Mew Relationship
» Ba «ModelLibrary» A New UML-RT Child
» 2 «EPackage, Modell =¥ New Diagram
» Ba «ModelLibrary» Eco # Mew Table

Attribute
CapsulePart
Class

Delete Enumeration

& Undo t QOperation

Port

StateMachine

Motation Views

Filter &
View Context
Pinger [«* «Capsule» Pinger

%= Pinger:StateMachine [«RTStateMachine» StateMachine

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.7 Add the Pinger StateMachine behaviour

1. Now that we have a state machine, let's add the behaviour to it: open the
Pinger::StateMachine. You will notice that we already provide you with the initial
pseudostate and a state ("State1") to get you started

2. Move these two initial elements to better positions, as shown and rename "State1" to
"Playing"” (hint: use the Properties tab or slowly click twice on the state's border)

3. We will also add a transition that will be taken when the other player returns the ball.
Using the transition tool draw a transition from the "Playing" state to itself.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

-~

E Slalelachine
nmitial @

L

Welcame inger %= Pinger:StateMachine &

StateMaching

Piaying

L

& Welcome W Pinger | %a Pinger:StateMachine 2

[StateMachine N
(N
ilial
Faying

=

=
k. A

@ Welcame B Pinger Yo Pinger:StateMachine £

i# Palette
[po &l -H-
= States and Transitions
& Srate
"% Transition
4 Choica
@ Deep Hiskory
@ Entry Point
@ Exit Paink
® |nitial state

&, Junction

= Palette
frE &~
(= States and Transitions
& 5kate
“t Transiton
& Chaice
& Deep History
@ Entry Point
@ Exit Point
® |nitial State

N .
& Junckion

= Palette
R EL -
= Stabes and Transitions
& 5take
“% Transition
#1 Cholce
i@ Dresep Hiskory
@ Entry Poink
@ Exit Poink
® |nitial Stake
& Junction

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.8 Add initial transition action

All that is now left is to add some triggers (which allow for transitions to be taken when
a message is received) and code blocks (remember, we are using C++ as the "Action
Language".

Let's start with the Initial Transition. Note that the initial transition is always taken once,
when the capsule is instantiated, so it does not need an trigger.

1. Click ont the Initial transition and then open the Code Snippet View" in the Properties
View area. Make sure that the "Effect" tab is selected at the bottom of the view. (hint:
you may want to move the code snippet view to the right of the properties view,
especially if you have a large monitor)

2. In the code snippet view, add the following code: (note the log messages so we can see
the execution and the check on message send success)

// Start the game by sending a "ping" to the other player
log.log ("Starting game") ;
if (pingPort.ping() .send()) {
log.log("ping sent!");
} else {

log.log("Error sending Ping!");

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

% StateMachine)

nitial

)

gear indicates transition

has an effect (code) Hover to see code

i#& Welcome |[@ Pinger %a Pinger::StateMachine &2

O Properties f Model Validation 7 Rel‘erencesﬁli= CndeSr;ippeI:View 831
D |nitial (C++)
{ start the game by sending a "ping" to the other player
log.log("starting game");
if (pingPort.ping().send()) { .
log.log("ping sent!");

}else{
log.log("Error sending Ping!");

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

7.9 Edit the trigger and code for self transition

1. Select the transition in the diagram and switch to the Properties view.

'~ *PingPong.di & = n

i Palette [
StateMachine) FEEEEE
% = States and Transi... =
& sState
“% Transition

& Choice
i Deep History
@ Entry Poink

@ Exit Point
® |nitial State
& Junction
L. -
&5 welcome inger | % Pinger:statemachine
[Properties 8 Model Validation %’ References Code Snippet View ™ ¥ = 0
[
UML-RT Mame
Ll Kind nkternal Local) External
Comments :
Trigger
Profile o
le
Sty Port Protocol Message Guard
Appearance
Rulers And Grid
Advanced

7.10 Add the transition trigger

1. In the Properties view, click on the [+] button in the Trigger section to create a new
trigger.

2. From the resulting dialog, select the pingPort.
3. From the list of protocol messages, select the pong protocol message.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

Click OK to set the trigger.

You now have a trigger defined for this transition. When the model runs, any message
received while in the Playing state will result in this transition being taken.

6. Notice that the transition name has be set to the name of the protocol message
selected, providing a clue on the diagram as to when the transition is triggered.

S

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

@ pong

UML-RT

UML
Comments
Profile

Style
Appearance
Rulers And Grid

fis] Properties 2 | J Model Validation € Documentation %’ References

m@%o - -0

Name

Kind
Trigger

nternal local @ external

Protocol Message

Create a new Trigger

v = «RTPorb» pingPort : ~PingPongProtocol

| & «RTPort» log : Log\

Protocol messages

- *
—+Z*inOut rtBound
42 inOut rtUnbound
v outpong

UML-RT| UML | Comments | Profile|

@ / | Cancel oK
@ pong /
|
UML-RT Name [
SE Kind Internal cal @ External
Comments .

. Trigger —
Profile 7)C) @)~
Style

Port Protocol Message Guard
Appearance .
Rulers And Grid pingPort outpong

StateMachine

Initial

GETTING STARTED WITH PAPYRUS FOR REALTIME V1.0

33

Getting Started with Papyrus for

RealTime v1.0

7.11 Add the code for the transition

The only thing left to do for this transition is to add its code. The basic steps are the
same as those taken previously to add the code for the initial transition

1. Click on the transition and the Code Snippet View to bring up the C++ editor for the
transition. Make sure that the "Effect" tab is selected at the bottom of the view.

2. Type in the following code (you will notice that it is very similar to that of the initial
transition):

// Reply to a pong message by sending a ping.
log.log ("Pong received!");
if (pingPort.ping () .send()) {
log.log("ping sent!"™);
} else {

log.log("Error sending Ping!");

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

[Properties Model Validation % Referm‘ 1 IE Code Snippet View 2
@ pong (C++)

// Reply to a pong message by sending a ping.
log.log("Pong received!");
if (pingPort.ping().send()) {
log.log("ping sent!);
}else{
log.log("Error sending Ping!");

£¥ Effect| Guard

F StateMachine h
Final View: wﬁl
3
.
pong
Playi
aying

e A

L A

7.12 You are now done with the creation of the Pinger capsule!

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

8. Create the "Ponger" capsule

To create the "Ponger" capsule, simply follow the same steps as when Pinger was
created, with the following differnces:

+ The capsule will be named "Ponger" instead of "Pinger"

+ The port is named "pong" and is not conjugated.

+ You should place the port on the left edge of the capsule, instead of the right. This will
allow us to put both capsules side by side so that their ports will be easy to connect.

+ The capsule's state machine will be different as it does not need to start the game and it
will not return the fifth ball in order to stop the game.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

8.1 Create the "Ponger" capsule's structure

Create the Ponger capsule's structure using the same instructions as for the Pinger
capsule structure, but with the following changes:

+ The capsule is named "Ponger"

+ The external port is named "pongPort"

+ The external port is not conjugated.

+ The external port is placed on the left edge of the capsule, instead of the right. This will
make it easier for us to connect the capsules when we put both side by side.

+ The log port is created in the same way

The result should be as shown below.

~? *PingPong.di &=]
Mot conjugated
= Capsule Part
pongPort : ¢ Connector
og

¢ Palette

[y & G0 - .

= Capsule Structure
O Port

[.® Ponger

Ponger Diagram

Welcome |@ Pinger |%a Pinger::StatEMachine—[Ponger 2 [

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

8.2 Add an attribute to Ponger

In order to limit the game (and not get a screenful of fast-streaming logs), we will add
an attribute that will be used to limit the number of "pongs" that can be sent as a
response to "pings", thereby allowing the game to end after a predetermined number of
returns ("pongs").

Select the Ponger capsule in the Model Explorer.

Click on the UML tab in the Properties view

Click on the [+] to the right of "Owned attribute" and select "Property."

In the resulting dialog, name the property "hitCount" and make its visibility "protected;"
set its type by clicking on the [...] next to "Type", expanding the "AnsiClibrary" entry and
select "int;"

and set its default value to a Literal Integer "0" (zero) by clicking on the [+] next to
"Default Value," selecting "Literal Integer," and accepting the default value of "0" (zero).

1R CORIDRCs

o

You can now see this attribute in the model explorer:

vz hitCount:int
10.0

8.3 Create the Ponger Capsule's statemachine

Create the Ponger capsule's statemachine using the same instructions as for the
Pinger capsule structure, but with the following changes:

+ The intial transition code will simply log that Ponger is ready to play:
log.log ("Ponger is ready");

+ The self-transition's trigger will be on PongPort's ping protocol message.
+ The self-transition's code will simply send a pong for every Ping received, until it
"misses."

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

Code:

// Reply to a ping message by sending a pong.
log.log ("Ping received!");
if (hitCount <=5) {
if (pongPort.pong().send()) {
log.log("pong sent!");
} else {
log.log("Error sending Pong!");
}
} else { log.log("Missed! Game over!");}
hitCount++;

The result should be as shown below.

StateMachine A
@ ping (C++)

// Reply to a ping message by sending a pong.
log.log("Ping received!");
if (hitCount ==5){

if (pongPort.pong().send() }{
log.log("pong sent!");

} else {
log.log("Error sending Pong!");

B Initial (C++)

log.log("Ponger is ready");

Playing

} else { log.log("Missed! Game over!");}
hitCount++;

Trigger

Port Protocol Message

pongPort in ping

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

9. The "Top" system capsule

Although it is possible to generate the various capsules on their own, the interactions
between them would not happen until their ports are connected.

To do this, we create a "Top" capsule that will contain instances of both the Pinger and
Ponger capsules so that we can connect their ports. Once this is done, we can
generate the code for that "Top" capsule and execute it. Generating the code for "Top"
will automatically bring in all the other related model elements.

Note that, although it is not a requirement, the "Top" capsule we will create in here will
be only structural, it will not, by itself, implement behaviour, other than that of its
contained capsule parts.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

9.1 Create the "Top" capsule

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

1. Create a new capsule in the model and name it "Top".
2.
3. From the model explorer, drag and drop a Pinger capsule into Top's compartment, on

Open Top's capsule diagram.

the left side.

From the model explorer, drag and drop a Ponger capsule into Top's compartment, on
the right side. Aim to have their ports vertically aligned.

Use the Connector tool from the palette to draw a connector between each capsule
part's ports.

That's it! You have created the Top capsule with two capsule parts that can nos
communicate with each other!

Getting Started with Papyrus for

RealTime v1.0

¢ Palette

Iy @ e B

(= Capsule Structure
O Port
& Capsule Part
¢ Connector

[=

—= | pingPort _
pinger: Pinger ponger: Ponger
pongPort

r%_ Model Explorfr EE] |

= W R =
*E= PingPong
== «Protocol» PingPongPro
¥ .2 «Capsule» Pinger
¥ .*«Capsule» Ponger,
¥ . «Capsule» Top

10. Execute the model

Now that the model is complete, we can execute it.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

10.1 Top Capsule

In order to generate the code, we need to determine which capsule will be the"top"
capsule, that is the capsule that will represent the system for the generated code. The
code generator will recursively look at all the capsules that are used as part of this top
capsule to generate the complete application. This is useful since each capsule can be
executed on its own (e.g., for test purposes. This also allows for easy managements of
"test harness" capsules for individual parts of the system. You can also set a default
"Top" capsule that is reused by code generation commands.

In this tutorial, we will simply generate the code for the selected capsule.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

10.2 Generate the model
1. Right-click on the "Top" capsule in the Model Explorer to bring up the context menu

2. Select "Generate with this capsule as top."
3. A CDT project is created in the Project Explorer and the C++ code is generated within it.

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

E.‘_McdelExplcrerEE] = b @ 1% 55 ¥ o= 0

= PingPong

» == «Protocol» PingPongProtocol
¥ = «Capsule» Pinger
Capsule» Ponger

e
» B2 «Mode Navigate
gweRULL: MNew Child
deglagile New Relationship
@=RREEE New UMLRT child
B MNew Diagram
B8 New Table

Delete
Rename

Undo

B Copy

Profiles
1 Import
1 Export

switch Architecture Conktexk...

Switch Architecture Viewpoints
Validation

O— .
= Qutline
. &= CreateSubmodel

Set as default top capsule
BN EL Cenerate with this capsule as t-:::pe
Edit Code

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

10.3 Alternative

If you will be generating the code often for a particular capsule, you can also designate
a capsule as being the top capsule. You would then be able to just re-generate more
easily.

10.4 Generated model

When generating the model, a CDT project is created to hold the generated code.

[t5 Project Explorer Eﬂ = B

==

» (= PingPong
~(=PingPong_CDTProject
¥ it Includes
v[=5rC
* @ Build Targets
¥ [g] Pinger.cc
* [n Pinger.hh
¥ [l PingPongProtocol.cc
* [n PingPongProtocol.hh
¥ [Ponger.cc
¥ [Ponger.hh
* [g Top.cc
¥ [n Top.hh
¥ [TopControllers.cc
» [n| TopControllers.hh
¥ [l TopMain.cc
CMakelLists.txt
& Makefile
& MakefileTop.mk
Top-connections.log

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

Getting Started with Papyrus for

RealTime v1.0

10.5 Compile the model

To compile and run the model, you will need a compatible build environment. At
present, we support Linux as the primary target platform with more limited support for
Windows and MacOS.

Note | CDT Integration | The integration with CDT is not yet complete. To build the
system, you will have to go to the command line or, if you are familiar with setting
project within the CDT, you can try to configure the project yourself (hint: the Papyrus-
RT runtime library imports may be missing).

Note | OS other than Linux | If you are using an operating system other than Linux,
you can still compile and run your model. Go to
Compiling and running Papyrus for Real Time applications for alternatives

1. Open a terminal and go to the folder where the code was generated, in this case, the
folder name would be <workspace>/PingPong_CDTProject/src, replacing
"<workspace>" with the path to your workspace location, e.g., "~/workspaces/
GettingStarted".

2. Type "make" at the command prompt to compile and link the model's generated code.

make[1]: Entering directory '/home/parallels/Documents/workspace-rt/PingPong_CDTProject/src’
MakefileTop.mk:3: warning: TARGETOS not defined. Choosing linux

MakefileTop.mk:9: warning: BUILDTOOLS not defined. Choosing xB6-gcc-4.6.3

g++ TopMain.cc -c -Wall -I1/home/parallels/Apps/Papyrus-RT/plugins/org.eclipse.papyrusrt.rts_1.6.08.20
17067181457 fumlrts/include -oTopMain.o

g++ PingPongProtocol.cc -c -Wall -I/home/parallels/Apps/Papyrus-RT/plugins/org.eclipse.papyrusrt.rts
1.0.0.201707181457 fumlrts/include -oPingPongProtocol.o

g++ Pinger.cc -c -Hall -If/homefparallels/Apps/Papyrus-RT/plugins/org.eclipse.papyrusrt.rts_1.0.0.201
707181457 fumlrts/include -oPinger.o

g++ Ponger.cc -c -Wall -I/homefparallels/Apps/Papyrus-RT/plugins/forg.eclipse.papyrusrt.rts_1.0.0.201
707181457 fumlrts/include -oPonger.o

g++ Top.cc -c -Wall -I/home/parallels/Apps/Papyrus-RT/plugins/org.eclipse.papyrusrt.rts_1.6.0.201767
181457 fumlrts/include -oTop.o

g++ TopControllers.cc -c -Wall -I/home/parallels/Apps/Papyrus-RT/plugins/org.eclipse.papyrusrt.rts_1
.0.0.201707181457 fumlrts/include -oTopControllers.o

g++ TopMain.o PingPongProtocol.o Pinger.o Ponger.o Top.o TopControllers.o -L/home /parallels/Apps/Pa
pyrus-RT/pluginsforg.eclipse.papyrusrt.rts_1.0.0.201707181457 /umlrts/1ib/1linux.x86-gcc-4.6.3 -1lrts
lpthread -1lrt -oTopMain

make[1]: Leaving directory ' /home/parallels/Documents/workspace-rt/PingPong_CDTProject/src'
parallels@ubuntu:

GETTING STARTED WITH PAPYRUS FOR REALTIME v1.0

https://wiki.eclipse.org/Papyrus-RT/User_Guide/Compiling_and_running_Papyrus_for_Real_Time_applications

Getting Started with Papyrus for

RealTime v1.0

10.6 Run the model's executable

You can then run the executable to see the log showing the (short) game!

1. At the command prompt, type "./TopMain"
2. Observe the results:

parallels@ubuntu: 5 ./TopMain
Controller "DefaultController" running.
Starting game
ping sent!
Ponger is ready
received!
sent!
g received!
sent!
received!
g sentl
received!
g sent!
received!
sent!

ong received!
sent!

g received!
sent!

received!

g sent!
received!
sent!

ong received!
sent!

g received!
sent!
received!

g sent!
received!

GETTING STARTED WITH PAPYRUS FOR REALTIME V1.0

Getting Started with Papyrus for

RealTime v1.0

11. Congratulations!

Congratulations!

You have just built and run an UML-RT model using

<

)

— AL [NV

—ARPYRUS

GETTING STARTED WITH PAPYRUS FOR REALTIME V1.0

	1. Introduction
	2. Starting Papyrus for Real Time
	2.1 Creating a workspace
	2.2 The workspace

	3. Create a Papyrus for Real Time Project containing a UML-RT model.
	3.1 Select File -> New -> Papyrus Project
	3.2 Select the architecture context for the model
	3.3 Define the project
	3.4 Provide model initialization information
	3.5 Project and Model Created

	4. Our project: PingPong
	5. Create a protocol
	5.1 Create the protocol
	5.2 Add protocol messages to the protocol
	5.3 Add the "pong" Protocol Message
	5.4 The "PingPong" protocol is now complete

	6. Defining the Tutorial's "PingPong" System's Structure
	7. Create the Pinger capsule
	7.1 Create the Pinger ("player 1") capsule
	7.2 Look at the Pinger capsule and open it's diagram
	7.3 Open Pinger's capsule diagram
	7.4 Add an external port to Pinger
	7.5 Add a log port
	7.6 Create Pinger's state machine
	7.7 Add the Pinger StateMachine behaviour
	7.8 Add initial transition action
	7.9 Edit the trigger and code for self transition
	7.10 Add the transition trigger
	7.11 Add the code for the transition
	7.12 You are now done with the creation of the Pinger capsule!

	8. Create the "Ponger" capsule
	8.1 Create the "Ponger" capsule's structure
	8.2 Add an attribute to Ponger
	8.3 Create the Ponger Capsule's statemachine

	9. The "Top" system capsule
	9.1 Create the "Top" capsule

	10. Execute the model
	10.1 Top Capsule
	10.2 Generate the model
	10.3 Alternative
	10.4 Generated model
	10.5 Compile the model
	10.6 Run the model's executable

	11. Congratulations!

