
An Introduction to Metamodelling

 Eclipse ECESIS Project!1

An Introduction to 
Metamodelling 

Principles & Fundamentals 

Department of Computer Science, 
The University of York, Heslington, York YO10 5DD, England 

http://www.cs.york.ac.uk/~paige



An Introduction to Metamodelling

 Eclipse ECESIS Project!2

Context of this work

• The present courseware has been elaborated in the context of the 
MODELWARE European  IST FP6 project (http://www.modelware-
ist.org/). 

• Co-funded by the European Commission, the MODELWARE project 
involves 19 partners from 8 European countries. MODELWARE 
aims to improve software productivity by capitalizing on techniques 
known as Model-Driven Development (MDD). 

• To achieve the goal of large-scale adoption of these MDD 
techniques, MODELWARE promotes the idea of a collaborative 
development of courseware dedicated to this domain.  

• The MDD courseware provided here with the status of open 
source software is produced under the EPL 1.0 license. 

http://www.modelware-ist.org/bb2Forum/index.php


An Introduction to Metamodelling

 Eclipse ECESIS Project!3

Metamodelling

• A controversial topic, and one that is currently 
critical within the UML/OMG/MDA community. 

• A metamodel is just another model (e.g., written in 
UML). 

• Metamodels are examples of domain-specific models. 
• Other example domains: real-time systems, safety critical 

systems, e-business. 

• The domain of metamodelling is language definition. 
• Thus, a metamodel is a model of some part of a 

language. 
• Which part depends on how the metamodel is to be used. 
• Parts: syntax, semantics, views/diagrams, ...



An Introduction to Metamodelling

 Eclipse ECESIS Project!4

Uses for a Metamodel

• For defining the syntax and semantics of a language. 

• To explain the language. 

• To compare languages rigorously. 

• To specify requirements for a tool for the language. 

• To specify a language to be used in a meta-tool (e.g., 
XMF). 

• To enable interchange between tools.



An Introduction to Metamodelling

 Eclipse ECESIS Project!5

Language Design

• How would you go about designing a programming 
language? 
1. What sort of programs do you want to allow programmers to 

create? (ie., user requirements). 
2. Define a syntax (eg., EBNF). 
3. Define semantics using structural induction over the constructs 

of the language, e.g., what do while, if, ;, etc all mean? 
4. Implement a compiler and libraries. 
5. Implement supporting tools. 
6. Build your killer app. 

• In doing so, you would follow well-known principles of 
programming language design.



An Introduction to Metamodelling

 Eclipse ECESIS Project!6

Programming Language Design

• The primary purpose of a programming language (PL) 
is to help a programmer to write programs. 
• ie., language design is not an exercise in and of itself. 
• if the language gets in the way, then it’s not a good one. 

• Other requirements, e.g., portability, stability, 
existing popularity, sponsorship by powerful 
organizations, should not be dominant factors.



An Introduction to Metamodelling

 Eclipse ECESIS Project!7

User Requirements for a PL

1.A PL should give assistance in expressing what a 
program should accomplish and how it should execute. 

2.A PL will encourage and assist in producing self-
documenting code. 
• To find out what a program does, you (ideally) will be able to 

look in one place. 

3.A PL will give assistance in finding errors.



An Introduction to Metamodelling

 Eclipse ECESIS Project!8

Principles of Programming Language Design

• Simplicity is absolutely necessary. 
• Otherwise how will the designer know the consequences of their 

design decisions? 
• Pursue this to the extreme! 

• Security. 
• Fast generation of efficient code. 
• Readability. 
• Clear syntax to enable identification of syntax errors. 
• Suitable structures for solving relevant problems. 
• Proof rules for features of the language. 
• Use patterns from other languages. 

• Uniqueness.



An Introduction to Metamodelling

 Eclipse ECESIS Project!9

Modelling Language Design

• How would you design a modelling language like UML? 
• In theory, you would like to apply roughly the same 

process as one does with PLs. 
• Can we learn by analogy? 

1. What are the user requirements for the graphical language? 
2. Define the syntax for the graphical language. 
3. Define the semantics for the graphical language via some 

analogy to structural induction over the syntax. 
4. Implement a compiler, tools, etc. 
5. Build a killer app. 

• Ideally, all done using well understood rules for 
visual language design.



An Introduction to Metamodelling

 Eclipse ECESIS Project!10

Requirements for UML

• A standard notation. 

• A general purpose modelling language, initially for 
software, but now encompassing all of system 
modelling in all domains, using dialects. 

• Enables communication. 

• (Presumably) Supported by tools. 

• Usable, user-friendly. 

• Extensible.



An Introduction to Metamodelling

 Eclipse ECESIS Project!11

Principles for Modelling Language Design

• Simplicity. 
• Security. 
• Drawable by tools and by hand. 
• Readability. 
• Clear syntax to enable identification of syntax errors. 
• Suitable structures for solving relevant problems. 
• Proof rules for features of the language. 
• Use patterns from other languages. 
• Uniqueness. 
• Underlying simple mapping for semantics of model.



An Introduction to Metamodelling

 Eclipse ECESIS Project!12

Graphical Syntax

• Captured using a metamodel. 

• In general, you can capture the abstract syntax of a 
language and its concrete syntax. 
• Abstract syntax is analogous to abstract syntax trees for 

programming languages 
• It conveys the essence of the syntax, and aggregate certain 

details that are less interesting (eg., syntax for a boolean 
expression language). 
• An abstract syntax tree is usually heterogeneous. 
• Concrete syntax captures all the gory details.



An Introduction to Metamodelling

 Eclipse ECESIS Project!13

Graphical Syntax (2)

• In general, this can be expressed in a suitably 
expressive existing graphical language. 
• Then the semantics of the existing graphical language 

influences (or even defines) the semantics of the new 
language. 

• However, UML is the standard modelling language. 

• So UML’s graphical syntax is defined in UML. 
• Bootstrapping problem. 
• This is why MOF/CWM have been introduced – you need to 

assume some axioms somewhere!



An Introduction to Metamodelling

 Eclipse ECESIS Project!14

Examples

• Abstract Syntax for UML 2.0 

• Abstract Syntax for OCL 2.0 

• See formal specifications available at www.omg.org. 

•Work through parts of these specifications and 
explain some of the modelling concepts. 

• Notice the recurring use of certain patterns, e.g., 
Composite.

http://www.omg.org/


An Introduction to Metamodelling

 Eclipse ECESIS Project!15

Model vs Metamodel

• A model conforms to or complies with the metamodel. 

• You can also think of a model as an instance of a 
metamodel. 

• Thus, wrt the UML metamodel, a class is an instance 
of a ModelElement and a Classifier. 

• It is usually helpful when drawing these things to 
think carefully about what level you’re working in.



An Introduction to Metamodelling

 Eclipse ECESIS Project!16

Model Conformance

L = (n:Notation, m:Metamodel) 
Metamodel = Syntax ∪ Semantics 
Semantics = Single_View ∪ Cross_Cutting 

• For any model m in notation n, 
  conforms(m,L) = ∀ c ∈ Metamodel • m sat c 

• If !conforms(m,L)  this means that there is an inconsistency in 
the model m. 

• Can also handle uncertainty, i.e., omission of essential 
information in the model. 
• In general, uncertainty leads to instantiations of the sat relation that cannot 

be discharged.



An Introduction to Metamodelling

 Eclipse ECESIS Project!17

OMG’s Pyramid Diagram

•The UML metamodel is at the M2 level (the meta-
level). 

•A specific UML model is at the M1 level (the model 
level). 

•MOF is at the meta-meta-level: it is the language in 
which other languages are defined. 
•There is also an M0 level which is an object configuration 
(ie., a snapshot).



An Introduction to Metamodelling

 Eclipse ECESIS Project!18

Semantics

• Recall that UML’s semantics is loosely defined (at 
best). 

• Suppose you want to know what the following diagram 
means. 

• Look at the metamodel. 

• Each class is an instance of Classifier.

WireFrameModel

ShadedWFModel

1 *

WirePolygon



An Introduction to Metamodelling

 Eclipse ECESIS Project!19

Tools for Building Metamodels

• UML. 
• For: Promotes understandability, deals well with reasonably 

large structures, CASE for drawing models. 
• Against: meta-circularity, semantic checking, pre-existing 

semantic fragmentation. 

• A formal specification language. 
• For: avoids meta-circularity, existing proof system for 

semantic checking, possible to construct proofs of 
consistency/soundness. 

• Against: less understandable, expertise needed, transparency 
of the semantic mapping, backlash against FM. 

• Work has been done using Z, B, PVS, other FM.



An Introduction to Metamodelling

 Eclipse ECESIS Project!20

Tools for Building Metamodels

• An executable language. 
• e.g., OCaml, Eiffel, JML. 
• For: understandable, works in the small and in the large, pre-

existing tools for compilation, metamodels can be tested and 
simulated easily. 
• Against: risk of losing abstraction level, need transparency of 

mapping from modelling language, ongoing misconception that 
programs and models must be written in different languages.


