
OpenMDM Client Technologies

Overview



Table of Contents
1. Technological Approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Full Web Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Full Desktop Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Web Stack with Device Helpers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4. Shared Web and Desktop Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5. Separate Web and Desktop Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Client Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Ubiquity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3. Deployment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4. Updates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5. Device Communication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. User Feedback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. From BMW  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



This document presents an overview of the different technological stacks that can

be used to implement a client for the OpenMDM technology. Alongside it describes

some key aspects for each client stack that should be used to decide which client

stack should be used for implementing OpenMDM applications. Finally, it

incorporates a summary of our findings after conducting user interviews.



Chapter 1. Technological Approach
Given recent feedback from users of the current system we have determined that the original

technology stack set forth for both Web and Desktop clients may not be the best one, specially looking

forward to a platform that should last for the next 5 years at the very least. Usage patterns of the

different type of users involved with the current system will help us decide which of the following

technology options is best suited to continue.

1.1. Full Web Stack

Regardless of the implementing technology (Eclipse RAP, JavaEE + JSF, Grails, etc) a web application

delivers the comfort of easy deployments paired with quick updates whenever they are needed. Mobile

clients can also benefit from this mode, as long as they stay connected. The usage of a full web stack

option is less appealing where direct contact with specialised devices (such as the benchmark

measurement machines) is mandatory. Thus, this stack makes total sense for test engineers and test

managers but not so for test executives that could leverage automatic import/export of data from

measurements machines when possible.

1.2. Full Desktop Stack

Desktop clients can exploit direct device communication without jumping through hoops like web

clients do (most likely through a Java applet which brings in a host of different problems). A desktop

client based on Eclipse 4 platform will do the expected job. Or perhaps a non OSGi technology such as a

full JavaFX, non-eclipse solution. The important key to remember here is that deployment will not be

as smooth as in the web option, and that we also loose the option to deploy to mobile clients, such as

tablets.

1.3. Web Stack with Device Helpers

A hybrid approach that can keep both test engineers and test executives happy could be a mix of web

and desktop client technologies. The bulk of the application is implemented using a Web stack (this is

the part where test engineers will use most of the time); the operations that require direct device

communication (the ones required by a test executive) can be implemented using small desktop

clients, or command/daemon based applications, that use web-friendly options (such as exporting data

in JSON format, running a local web server, etc) in order for the web application to read the data

coming from the devices. Deployment and rolling updates for said command based applications still

represent an obstacle that must be overcome; the same deploy strategy as a full desktop client stack

can be applied here.

1.4. Shared Web and Desktop Stack

This is an option unique to Eclipse RCP, as the same application can be accessed from the web using



Eclipse’s RAP technology. However the fact that a web based application cannot access local devices

while the RCP one can means that RCP applications must be deployed to benchmark stations while web

based applications can be deployed everywhere else. Deployment of RCP applications remains as a

hurdle to be overcome. Frankly there are not many advantages for this option as if you have to come

with a solution for the deployment problem for a subset of users you can apply it for all of them.

1.5. Separate Web and Desktop Stack

Finally we come to the last option where Web and Client might share some common codebase but they

are inherently different from one another. They might implement the same functionality but they do

so in totally different ways. In a sense it’s writing the same application twice, using two non-

homogeneous technology stacks. This gives the best flexibility overall in terms of richness and

behavior required by each user however it’s perhaps the one that requires more thought about its

architecture, as it will have much more moving parts that then other options.



Chapter 2. Client Features
The following features define the behavior and essence of each client stack. We believe them to be the

main drivers for picking a technological stack.

2.1. Security

They are inherently insecure given that they rely on an execution environment (the browser) that

can’t be fully controlled. If needed, opening access to the filesystem or short time persistence storage

can cause further security risks, at the very least they require an additional step during deployment

and configuration. There may be some environment (such as mobile) where direct access to the

hosting environment is not possible.

Security is stronger as the running environment can be closed down to every possible outcome (using

a very strict SecurityManager for example).

2.2. Ubiquity

These applications can be accessed virtually from anywhere. Given responsive design techniques and

good styling practices these applications can appear and behave like their native counterparts when

accessed from a mobile device.

These applications can only run on the computer on which they are installed. This also ties the user to

explicit location unless the application is installed on a laptop computer that can be freely moved to

anywhere the user needs to be.

2.3. Deployment

Deploying a web application is a transparent step as users only need to be concerned by accessing a

given URL on their browsers. Mobile applications can use their native application store (iTunes, Play,

etc), meaning that installing a new application is basically one click away from the end user’s

perspective. Developers can use a combination of scheduled releases, rolling updates, even continues

delivery to push new application versions to a web server. Mobile applications still require an

authorization process in order to push new releases to the authorized application stores.

The first deployment can be performed either manually or using automated solutions as file copying or

application provisioning tools. This is perhaps the topic that hinders most this type of applications as IT

must be involved directly in order to assess how and when applications can be installed into a

particular machine.

2.4. Updates

Like deployment, updates can be delivered transparently or with a single click (in the case of



application stores) to the end user. A point to consider here is that some users may need/want t access

an older version (if possible), in which case versioning the communicating APIs is a good practice.

Rolling new updates is the second pain point that these application suffer. Either the same deployment

techniques are used (updating the application as a whole, like a black box), or a customized update

solution is built and put in place (for updating just the changed deltas). Such customized solution may

be provided by the chosen technology stack (Eclipse auto-update feature) or built from scratch.

2.5. Device Communication

Devices can be separated in two camps depending on their communication strategy with the external

world. - passive: they output data to a know location using files or sockets. They may also expose a

REST interface or a webservice. - active: they can push data to a registered endpoint (webservice, REST,

other) when data is available.

Active devices should pose a smaller integration risk than passive devices, as the former define a strict

API that consumers must follow.

By design, web applications can’t break out of the browser. Consuming data directly from an external

passive device can be very tricky depending of the communication interface that the device exposes.

Mobile application will face the same problem.

Desktop applications can talk with both types of devices without much problem as they run on

hardware that’s physically linked to the device or reachable by other means without compromising

security.



Chapter 3. User Feedback

3.1. From BMW

The test engineers (Versuchsingenieure) at BMW work mostly at their desktop in their office. Test

executives (Prüfstandstechniker) run tests at workbenches in industrial buildings. One interview

partner stated that the test executives in his department do not use the OpenMDM application. Instead

they use their own application to gather the specification of the tests as well as to forward the

measurement results to the ODS system. Another interview partner told that some test executives use

the OpenMDM application to search for the full test specification by entering the key information from

the event generated for the testbench’s Outlook calendar.

Currently the client is distributed as a zipped file by superiors and colleagues. In order to fulfill special

business needs of certain users/ user groups the client has been extended by plugins. Thus many

different versions are in use now among the departments. Some departments do not benefit of plugins

because they do not know of their existence.

Explicitly assigned roles and rights assure that only authorized users can manipulate test

specifications (prior to the test order) and add measurement results and other associated data.

One interview partner mentioned that the OpenMDM application has to easily connect to sophisticated

analysis tools i.e. to be able to open external desktop applications while providing an ASAM ODS path

to the data of interest. Simplified analyses should be possible from within the application (in order to

get an overview of the testsuite, find the test of interest). Another interview partner uses the

OpenMDM system just for revision-safe archiving.

3.1.1. From Others

Security is regarded as a core requirement. The OpenMDM application has to provide storage and

transport encryption and has to support data backup and recovery. Central infrastructure services like

databases, file shares, corporate directories and authorization/authentification services which are

already in place must be easily integrable.

The logged-in user should only see test data he is authorized for. In order to get access to data from

others the user has to file a permission request which is either granted or denied by a designated

administrator.



Chapter 4. Evaluation
The previous categories have been summarized in the following table along with a valuation of their

impact given the proposed set of technological stacks.

A - indicates less (or negative) impact where as a + indicates a higher (or positive) impact.

Category Sub-
Category

Full Web
Stack

Full Desktop
Stack

Web Stack
with Device
Helpers

Shared Web
& Desktop
Stack

Separate
Web &
Desktop
Stack

Security Can close
down
environment

- - - + + + - + + + +

Requires
local setup

+ + + - - - - - - - -

Ubiquity Runs on
desktop

+ + + + + + + + + + + + + + +

Runs no
mobile/tablet

+ + + - - - - + + + +

Deployment Requires
local install

- - + + + + +

Requires
downtime

+ + - - + + + +

Updates Requires
local install

- - + + + + +

Requires
downtime

+ + - - + + + +

Device
Communica
tion

Direct - - - + + + + + + + + +

REST /
Webservice

+ + + + + + + + +

Time to
Market

Development
Speed

+ + + + + + - -

Evaluation 13 17 14 16 15


	OpenMDM Client Technologies Overview
	Table of Contents
	Chapter 1. Technological Approach
	1.1. Full Web Stack
	1.2. Full Desktop Stack
	1.3. Web Stack with Device Helpers
	1.4. Shared Web and Desktop Stack
	1.5. Separate Web and Desktop Stack

	Chapter 2. Client Features
	2.1. Security
	2.2. Ubiquity
	2.3. Deployment
	2.4. Updates
	2.5. Device Communication

	Chapter 3. User Feedback
	3.1. From BMW

	Chapter 4. Evaluation

