
C++ Refactoring – Now for Real
Sergey Prigogin

Google

CDT committer, refactoring component lead

Copyright (c) 2012 Google. Made available under the Eclipse Public License v1.0.

History of refactoring in CDT

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Rename

Toggle Function

Extract Local Variable

Getters and Setters

Hide Method

Implement Method

Extract Constant

Extract Function

What’s wrong with refactoring in CDT?

Ø Corrupts surrounding code

Ø Generated code is not formatted properly

Ø Often produces semantically invalid code

Ø Does it very slowly

Ø Requires you to save all files

Why was it slow?

Ø Refactoring requires AST

Ø AST requires index read lock

Ø Refactoring steps:
o checkInitialConditions

o checkFinalConditions

o createChange

How we made it fast

Ø Disposable refactoring context object

Ø Caching of ASTs

Ø Using editor AST when available
o Index doesn’t help with dirty editors

Preventing collateral damage

Ø AST rewrite infrastructure

Ø Creation of textual changes based on AST
delta

Passing parameters by value or reference

class A {!

public:!

 void setIntField(int intField) {!

 this->intField = intField;!

 }!

!

 void setStrField(const std::string& strField) {!

 this->strField = strField;!

 }!

!

private:!

 int intField;!

 std::string strField;!

};!

Which variables should be returned
int factorial(int k) {!
 int i = 1;!
 int f = 1;!
 while (i <= k)!
 f *= i++;!
 return f;!
}!

int multiply(int f, int* i) {!
 f *= *i++;!
 return f;!
}!
!
int factorial(int k) {!
 int i = 1;!
 int f = 1;!
 while (i <= k)!
 f = multiply(f, &i);!
 return f;!
}!

How is was in CDT 8.0
int factorial(int k) {!
 int i = 1;!
 int f = 1;!
 while (i <= k)!
 f *= i++;!
 return f;!
}!

int multiply(int f, int i)!
{!
 f *= i++;!
}!
!
int factorial(int k) {!
 int i = 1;!
 int f = 1;!
 while (i <= k)!
 f = multiply(f, i);!
 return f;!
}!

New code style preferences

How can I try it myself?

Download https://hudson.eclipse.org/hudson/
job/cdt-nightly/lastSuccessfulBuild/artifact/
releng/org.eclipse.cdt.repo/target/
org.eclipse.cdt.repo.zip

What’s next?

Ø Focus on quality

Ø Change Function Signature and Inline
refactorings

Ø Rename file when renaming a class

Ø Organize Includes

