
MODEL-BASED SYSTEMS ENGINEERING –
A WINDING ROAD

ERICSSON MODELING DAYS
2016-09-13
KLAAS GADEYNE, JOHAN VAN NOTEN

2

Mission Flanders Make

Aiming at product & process innovation
for the vehicles, machines and factories of the future

To strengthen the long-term international competitiveness
of the Flemish manufacturing industry by carrying out excellent,
industry-driven, pre-competitive research in the domains of

▲  Mechatronics

▲  Product development methods

▲  Advanced manufacturing technologies

3

 Eight research programs
within three technology domains

RP1 – Clean Energy-Efficient Motion Systems

RP2 – Smart Monitoring Systems

RP4 – Intelligent Product Design Methods

RP5 – Design & Manufacturing of Smart and Lightweight Structures

RP8 – Agile & Human-Centered Production and Robotic Systems

RP6 – Additive Manufacturing for Serial Production

RP7 – Manufacturing for High Precision Products

RP3 – High-Performance Autonomous Mechatronic Systems

Mechatronics

Product
Development

Methods

Advanced
Manufacturing
Technologies

RP4 – Intelligent Product Design Methods

4

Our partner network

5

Our model-based context
Example: a CupCake production line

Comsol ®
Thermal analysis

Oven

Simulink ®
post-proc. control

Post
processing

Central
co-

ordination

Papyrus-RT
Coordination

AutoCAD ®
Mechanical design OpenModelica

Physical modeling

System Engineering =
- Guarantee consistency

- Streamline collaboration
-  Make the right decisions
! Language & tool required

6

What models to use?

Very domain specific models

p  Tools such as Ecore, Xtext, Graphiti

p  E.g. a graphical language
to produce stream processing expressions

Domain of Systems / Mechatronics / CPS

p  Tools: Papyrus UML + SysML + Profiles

p  E.g. SysML as a pivot model as shown in
“A Practical guide to SysML”, Friedenthal, e.a.

7

Examples
Describing system architecture

p Required features
p Documenting interfaces
p Describe behavior & structure

p How?
p Standard SysML

–  Activity diagrams
–  Block diagrams
–  Internal block diagrams

p Tooling such as Papyrus

! Useful & simple

8

Examples
Generating documentation

p Required features
p Generate documents / websites based on modeled information

p How?
p Not provided by SysML
p Additional tooling: GenDoc (or similar)

! Useful & relatively simple

9

Model-based SE: one clear choice

SysML
solves

everything!

System Engineering? Let’s go for

10

Examples
Easy real-live representation

p Required features of the CupCake oven

p PaperCup, baking mold & dough enter the oven

p Cup is put in a baking mold

p Dough is applied to the cup

p Cup + baked cake leave the oven

p How?
p Anybody knows how to represent the structure (not the process) in SysML?
p Should be clear representation for all team members!

11

Examples
Easy real-live representation

How to represent the mold
traveling through the system?

12

Examples
Easy real-live representation

How to represent the cup
being pushed in the mold?

13

Examples
Easy real-live representation

Put dough
in the mold?

14

Examples
Easy real-live representation

p SysML approach:
p Different views
p Separation of behavior & structure

p Drawback:
p Domain experts don’t understand the “drawings” anymore
p Me neither…

p  This was exactly one of the required aspects!

15

Model-based SE: one clear choice

SysML
solves

everything!

System Engineering? Let’s go for

****!
SysML

is useless!

16

Examples
Storing issues & decisions

p Required features
p Shows to-be-discussed elements in orange
p Attached to each element are issues / decisions / rationales
p Hover over shows attached issues

p How?
p Not provided by SysML
p Tool smith needs to:

–  Define Profile
–  Modify CSS
–  Implement validation

! Feasible, but not trivial

17

Examples
Allocation between abstraction levels

p Required features
p Allocate relationship
p Tables
p Automatic sources

p How?
p Base by SysML
p Tables by Papyrus
p Tool smith needs to

–  Define table type
–  Code table population

! Feasible, but not trivial

18

Model-based SE: one clear choice

SysML
solves

everything!

System Engineering? Let’s go for

****!
SysML

is useless!

SysML
is a solid

base!

19

Examples
Functional Safety Failures & Propagation

p Required features
p Function definition
p Failure definition
p Failure propagation through system architecture

p How?
p Not available in SysML
p Tool smith needs to define

–  Profile
–  New or modified diagram type
–  New user interactions
–  Validations
–  Exploitation for FMEA analysis

! Coding, maintenance…

20

Model-based SE: one clear choice

SysML
solves

everything!

System Engineering? Let’s go for

****!
SysML

is useless!

SysML
is a solid

base!

SysML
customizations

heavy on creation
& maintenance!

A winding road…

21

General solution available?

p Similar observations for other topics
p Validation of requirements
p Design space exploration
p Design Concept comparison / what-if

p  In all cases
p SysML offers a base
p Additional steps ! additional tooling

p Solution
p Provide a tool that covers all Systems Engineering functionality
p Everybody happy….

This is a lie…

22

General solution available?

p Observation:
p SysML is a generic SE language
p Papyrus is a generic tool supporting that generic SE language
p Additional tooling adds value

 - Most valuable tools include a method
 - Most valuable tools make assumptions about your model structure

E.g.
–  Papyrus-RT = supposes UML-RT method
–  Safety profile = builds on a method for functional safety
–  Allocation completeness checks = needs to know what you want to allocate
–  Concept comparison = depends on the concept generation process

p But… processes/standards are like toothbrushes…
p No “generally accepted method” exists
p Each company lives in a different context
p Most companies struggle with the method (& tool)

1 common
SE tooling

23

Feasibility / adoptability for companies

Big
companies

Ability to create method
and corresponding tooling

People with enough
time & money

(~researchers?)

Most mechatronics teams
(potentially big companies,
but small dev/user teams)

Challenge…
drowning in complexity of

tools / methods

24

How to straighten the “winding road”?

p SysML?
p Yeah, good base
p  Lots of unclarity on method / best practices ! far from a full solution

p  Ease SysML
p SysML is difficult ! simplify it (reduce menus, reduce UML)
p Ease / streamline typical usage scenarios (~ depends partially on method)

p  Introduce reusable method fragments
p Not a full / strict method
p Fragments of method + corresponding tooling

“If you want to …, then … is a good way to do so”
p Allow company to pick an choose

p  Little development
p Mainly configuration
p  Include guidance

25

The solution…

p  Your options:
p Wait for a big player to develop method & tool ! Swallow
p Develop method & tool yourself ! Drown
p Collaborate in Papyrus IC on Papyrus for SE ! Win

Company 1 Company 2 Company 3

Feature A

Feature B

Feature C

…

! Joint development

! Slight adjustment

! Custom dev

QUESTIONS?

Feel free to contact:
klaas.gadeyne@flandersmake.be
johan.vannoten@flandersmake.be

