@ EGF | PATTERN

Eclipse Generation Factories

PATTERN

Author: Benoit Langlois — benoit.langlois@thalesgroup.com

Version: 1.0

DEFINITION

A Pattern is a means to apply a systematic transformation (e.g., model-to-text) onto a resource.

OBJECTIVES
The objectives of a Pattern are to:

Provide a formalism to express systematic transformation onto a resource.

The interests are to:

Create and promote transformation portfolios,
Adapt a portfolio to a new context and promote it as a new portfolio.

CONCERNS
r% * Ina production plan of a Factory Component, the designer declares patterns used
m and the way to apply them.
Designer
r'% ¢ The developer defines the pattern specification (i.e., the external view of a
m pattern).
¢ The developer implements the pattern implementation (i.e., the internal view of a
Developer pattern).
EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 1|Page

© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

STRUCTURE

Pattern Library

1 nature

Pattern Nature

¢

0].1 superPattern

1 headerMethod_
Pattern 1 footerMethod. | Pattern Method
* elements 0..1 conditionMethod
1 initMethod

* methods

* methods

Pattern Parameter

* variables

Pattern Variable

* orchestration

Call

Figure 1. Pattern at the metamodel level

Comprehension:

e A Pattern Library contains a set of Patterns.

* A Pattern is a declarative formalism to process a resource. For instance, a set of Package,
Class, Attribute and Operation Patterns are applied over a model which is a hierarchy of
Packages, Classes, Attributes and Operations.

¢ For presentation, a Pattern is made of two main parts:

0 Specification part. A Pattern has a name and has a Nature, especially to identify the
language used to implement the Pattern. A Pattern can inherit from a Pattern for
inheritance of all the Pattern properties (e.g., Variables, Methods). In the
specification part, Pattern Parameters define the Pattern call context, like a method
is called with parameters. Default Pattern Parameters are Ecore metaclasses but the
Pattern Parameter type is open to any Emf class and Java type. (Cf. Figure 2.)

0 Implementation part. This part identifies the local Variables, the Pattern Methods,
and the Method orchestration. (Cf. Figure 3.)

e Pattern Methods. Several types of Pattern Methods exist:

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 2|Page
© 2014 by Thales; made available under the EPL v1.0

& EGF

Eclipse Generation Factories

PATTERN

0]
0]

0]
0]
0]

A Header method localizes the declaration part of the Pattern implementation.

A set of Pattern methods are declared with their name and description
corresponding to a method body. This description conforms to the language
identified by the Pattern Nature. For instance, Pattern with the Java Nature has
methods implemented in Java.

The Footer method localizes the final declaration of a Pattern implementation.

An Init Method enables to initialize the Pattern Variables.

The PreCondition Method enables to execute or not a Pattern when the
PreCondition is satisfied or not.

e Pattern Orchestration. It enables to order the Pattern Method calls. Several kinds of Pattern
Calls exist:

0]
0]

Method Call. It is a simple call a Pattern Method identified by its name (e.g., body).
Super-Pattern Call. This enables to apply the orchestration defined in the Super-
Pattern, and this recursively in the Pattern hierarchy. Patterns in the same Pattern
hierarchy must have the Pattern Nature.

Pattern Call. This enables to call a Pattern as a Pattern Method. It offers the
mechanism of delegation. A Pattern Parameter association links each Parameter of
the called Pattern to a Pattern Parameter value of the calling Pattern. Pattern Call
allows calling Patterns with different Pattern Natures (e.g., a Java Pattern can call a
Jet Pattern, and reciprocally).

Callback. Suppose that you want to automatically open and close sections at
different levels of definition, such as a Package contains Packages or Classes, and a
Class contains Attributes or Operations. A Callback method is a kind of breaking
point: all the Calls before the Callback correspond to a begin section with the current
Pattern context (e.g., the Class Pattern context); Calls after the Callback correspond
to the end section; a Callback method enables to delegate work to other Patterns
(e.g., to Attribute and Operation Patterns when it is time to process Attributes and
Operations of the current Class).

Pattern Injection Call. A Pattern Injection corresponds to a set of Pattern Calls for
each value of a query result.

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 3|Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Pattern Language

& Specification
Inheritance Pattern Nature
Choose th ttern: Select the kind of the pattern:
Super-pattern 6 Sper paiem N e patem
L— 5 parent: Noparent E Type: | JetNature
Parameters
= t Define parameters for this pattern in the folowing section.
arameter Name Type Query
L aClass EClass
7
x

¢

J

Overview | Specification | Implementation |

Figure 2. Pattern Specification part

Methods which implement the pattern

They conform to the pattern language Order to execute the methods
& Implementation
Methods Orchestration
Pattern methods: Implementation methods: Organize method cals:
@ body £¥body - [MethodCal]
e =
i preCondtion 8
@ footer x
_ =+]
‘I:F /
J_L x
Variables P
Set up some variable avaiable in al methods: &
o e C+)
Va
x
Overview | Specification | Implementation |
Figure 3. Pattern Implementation part
EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 4|Page

© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

EXAMPLES

Figure 4 shows a Factory Component with two Patterns, “classPattern” and “attributePattern,
which respectively display the Class names, and the Attributes names of each Class. The
specification and implementation parts of the classPattern are shown in Figure 2 and Figure 3.
Code of the classPattern and attributePattern body methods (see Figure 5 and Figure 6) is
written in Jet. The Domain is the EGF Fcore model (see Figure 4 in the Domain Viewpoint part).
Patterns are applied with the “Domain Driven Pattern Strategy” Task (see Figure 4 in the
Production Plan) which applies Patterns over the Fcore model. The result is shown in Figure 7.

éia Pattern_UC1 1 ClassPattern.foore 25

platfarm: fpluginforg eclipse, eaf .usecase, pattern,ucl/egf/Patt. .. .0, Dyworkiqualification\arg. eclipse. egf .usecase, pattern,uc1y]

=l M5 Pattern - UC1.1 - EClasses [Factory Component]
=9 [Viewpoink Container]
=35 [Domain Yiewpoint]
[platForm: fpluginorg.edipse.egf . modelimodelfFcore. ecare] [EMF Domain]
= f:, [Pattern Viewpoint]
=4 egf.ucl_1.pattern [Library]
v classPattern [Pattern)
v attributePattern [Pattern]
= [Production Flan]
=I%ig [Production Plan Invocation] - Domain Criven Pattern Strategy Task [Task Java)
= L'IE, [Irnvocation Contract Container]
= n'@ daormain [In] [Invocation Contract]
it EMFDomain [Type Domain]
= .'@ pattern.ids [In] [Invocation Contract]
":é', [Type Pattern List]
= LEI pattern, execution.reporter [In] [Invocation Conkrack]
%y [Type Pattern Execution Reporter]

Figure 4. Example of Factory Component with Class and Attribute Patterns

éi. Patkern_LUC1_1_ClassPattern.foore & classPattern = classPattern &3 =0

- Hello <%= aClass.getlame (] %> Cla=ss

header |init | body | Fooker

Figure 5. Implementation of the classPattern body method

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 5|Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Pattern_UC1_1_ClassPattern.foore (‘ attributePattern (“ attributePattern &3 =B

- <%= andttribute.getMNawme () %> attribute

headerlinit body Fu:u:uter|

Figure 6. Implementation of the attributePattern body method

Result of pattern:

- Hello ModelElement Class
- iD attribute
- description attribute
- Hello NamedModelElement Class
- name attribute
- Hello Activity Class
- Hello Contract Class
- mandatory attribute
- mode attribute
- Hello FactoryComponent Class
- Hello ContractContainer Class
- Hello FactoryComponentContract Class
- Hello ViewpointContainer Class
- Hello Viewpoint Class
- Hello Orchestration Class
- Hello OrchestrationParameterContainer Class
- Hello OrchestrationParameter Class
- Hello Invocation Class
- Hello InvocationContractContainer Class
- Hello InvocationContract Class

Figure 7. Result in the console

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 6|Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

PATTERN STRATEGIES

A Pattern is only a process unit. As quickly introduced in the example, a Strategy determines the
way to apply Patterns over a resource (e.g., an Ecore model, File). The following sections
present the two Strategies provided with EGF. Other strategies can be developed (e.g., in-large
navigation, navigation managing proprieties for model transformations). A Pattern Strategy,
which is a Task, requires parameter values (i.e., contract values), which can be considered as the
interface signature of the Strategy. Those parameters emphasize the interest of decoupling
concerns, for instance decoupling model-to-text transformation from its output devoted to a
reporter which can be changed at any time when it is considered as a parameter value.

Domain Driven Pattern Strategy Task

Strategy description

While the domain resource is parsed (e.g., an EMF model), a set of patterns are applied.

Interface
Name Type Description Optional
domain Domain Domain resource to be No
processed by the patterns.
pattern.execution.reporter PatternExecutionReporter | Reporter Class responsible for Yes
the output of model-to-text
transformation. The default
output is the console.
pattern.call.back.handler PatternCallBackHandler Callback Class called for a Java Yes
callback.
pattern.domain.driven.visitor | PatternDomainVisitor Visitor Class called when each Yes
domain element is visited.
pattern.ids Ordered list of Patterns Patterns or Pattern Libraries to No
and PatternLibrary be applied onto a resource.
pattern.substitutions PatternSubstitution A Pattern substitution is a list of Yes
Pattern replacements. A
replacement consists in replacing
Patterns in pattern.ids by other
patterns.
Pattern.output.processor PatternOutputProcessor For model-to-text Yes
transformation, a Class which
post-processes the result of a
reporter.
Algorithm

In-depth navigation over a domain. For each Domain element:
For each Pattern of pattern.ids:

Apply the Pattern on the current element

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 7|Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Pattern Driven Strategy Task

Strategy description

An ordered list of patterns is successively applied to each element of a domain resource.

Interface

Same interface than the “Domain Driven Pattern Strategy Task”.

Algorithm
For each Pattern of Pattern Libraries:
In-depth navigation over a domain. For each Domain element:

Apply the Pattern on the current element

Control

Way to apply patterns
and a resource together

— 7

List of patterns to be applied
(: ’’’’’ For pattern execution, use of the
== language engine matching the
pattern language, e.g. Jet, Java

Processing

For each pattern, query
over a resource, e.g. Model

View

Optional - Pattern reporter for the
final rendering

Figure 8. General process with the application of a Pattern Strategy

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 8|Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

PATTERN RELATIONSHIPS

An issue with Patterns is to articulate Patterns together and Pattern Strategy Parameter values.
This section explains every kind of Pattern relationship, even if some of them were already
presented.

Pattern inheritance

Pattern inheritance | jke Class inheritance, Pattern inheritance enables to communalize

- ~

€ > properties (i.e., Pattern Parameters, Pattern variables, methods, method

_ZE‘ orchestration) in a mono-inheritance Pattern hierarchy.

- ~

4 N\
¢ >

The following picture shows that the HelloWorld Pattern inherits of methods from its Hello
Super-Pattern for its orchestration.

Pattern Hierarchy

Hello
- sayHello .
st Orchestration of HelloWorld
% Orchestration
l Organize method calis:
Hello World % SayHelo - [MethodCall]
= body - [MethodCal]
- body ¥ finish - [MethodCal]

Figure 9. Super-Pattern method inheritance

A “Call to super pattern orchestration” in the Pattern orchestration enables to abstract and
ignore the Super-Pattern orchestration.

Orchestration

Organize method cals:

= [Call to super pattern orchestration]
= body - [MethodCal]

Figure 10. Super-Pattern method inheritance

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 9|Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

Pattern delegation (aka Pattern call)

Pattern delegation |n g Pattern orchestration, Pattern delegation enables problem

P ~ p)

C____>—C_____ decomposition and reuse of patterns in different contexts. The
delegates orchestration of the called pattern is applied. The Pattern caller provides
parameter values to the called pattern. The parameter values are

statically declared at the pattern definition.

The following picture presents the call to the HelloFriends Pattern by the HelloWorld Pattern.

———

" Hello =~ ol Hello ™.

~<_World -7 '~ _Friends >

—

—_——

Orchestration

Organize method calis:

= SayHelo - [MethodCal]

= body - [MethodCall]
— | | ®\HeloFriends - [PatternCal]

= finish - [MethodCal]

Figure 11. Pattern delegation — Pattern Call in the Pattern orchestration

The following picture shows how to reuse a common behavior, Displaying Annotations, for the
Ecore EClass and EAttribute Classes.

e o

“SREClass _ .~ l_

~

(/’ Display >
~<_Annotations __~

- Bieplay N F

~S—_——-—

Figure 12. Pattern delegation — Reuse of behavior

The multilingual call corresponds to a Pattern Delegation where Pattern natures are different.
For instance, a Pattern with a Jet nature calls a Pattern with a Java nature in order to differently
process the same resource. A warning: the model-to-text processing and Java call have two

different lifecycles; then, the result of the Java calls can be achieved before the end of the Jet
processing.

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 10| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

Pattern Injection

Pattern injection

& —& A Pattern injection corresponds to a Pattern Delegation, but the
_/,‘njects\‘“’/ value of a Pattern parameter is dynamically set at pattern execution
with a query.

In the following example, “ClassPattern” calls by injection “ForlnjectionPattern”.

éia platform: fpluginforg. eclipse. egf, usecase. pattern,ucl feaf [Pattern_UC1_7_Injection.foore

= M5 Pattern - UC1.7 - Pattern Injection [Factory Component]
=197 [Wiewpoint Container]
+ 5{5 [Damain Yiewpoint]
= |;_*| [Pattern Viewpoint]
=04 egf.ucl_7.pattern [Library]
wIn ClassPattern [Pattern]
=13 eqgf.ucl_7.pattern.forInjection [Library]
SOl ForInjectionPattern [Pattern]
+ [Production Plan]

Figure 13. Pattern injection - Patterns

The Pattern Parameter of the injected Parameter is associated to a query (“Injection query” in
the example). The Pattern is applied for each element of the query result, in the example for
each ENamedElement of the Class.

éi; Patkern_UC1_7 _Injection.fcore = ForInjectionPattern 3 ConkentQuery. java ¢+ org.edlipse. eqf usecase. pattern.uc

43 Specification

Inheritance Pattern Mature

Choose the super pattern: Select the kind of the pattern:

Parenk: Type: Jethlature w
Parameters

Define parameters For this patkern in the Following section,

Mame Tvpe Query
parameker EMamedElement Injection query

Owerview | Specification | Implementation

Figure 14. Pattern injection — Pattern for injection — Specification part

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 11| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

In order to be recognized, in the plugin.xml, an extension declares the query name and Class
which implements the query.

<ext ensi on
poi nt ="org. ecl i pse. egf. pattern. query">
<query
cl ass="org. ecli pse. egf. usecase. pattern. ucl. query. Cont ent Query"
i d="org. eclipse. egf.usecase. pattern. ucl. queryl"
nane="I|nj ecti on query">
</ query>
</ ext ensi on>

Figure 15. Example of extension for a query declaration

The following code exemplifies a query implementation.

public class ContentQuery inplenents | Query {

public List<Object> execute
(Par anet er Descri pti on paraneter,
Map<String, String> queryCtx, PatternContext context) {

String type = paraneter.get Type();

bj ect | oadCl ass =
Runt i mePar anmet er TypeHel per. | NSTANCE. | oadCl ass(type);

if (!(loadd ass instanceof ECd ass))
throw new ||| egal St at eExcepti on(EG-Patt er nMessages. query_errorl);

Col | ecti on<Ehj ect > domain =
((EQnj ect) context. getVal ue(PatternContext.| NJECTED CONTEXT))
.eContents();
if (domain == null)
throw new ||| egal St at eExcepti on(EG-Patt er nMessages. query_error 8);

SELECT query = new SELECT(new FROM donai n),
new WHERE(new EQbj ect TypeRel ati onCondi ti on((EC ass)
| oadd ass,
TypeRel ati on. SAMETYPE_OR SUBTYPE_LI TERAL)));

| QueryResult result = query.execute();

if (result.getException() !'= null)
throw new ||| egal St at eExcepti on(result. get Exception());
return new ArraylLi st<Obj ect>(result.get EQbjects());
}
}
Figure 16. Example of code for a query
EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 12| Page

© 2014 by Thales; made available under the EPL v1.0

@ EGF | PATTERN

Eclipse Generation Factories

Pattern Callback

Pattern Callback

af@is T ~
(—
~ -

A Callback is a breaking point in the Pattern orchestration. When a
Callback is encountered, the current Pattern orchestration is stopped; it
continues when all the next Patterns to be executed by the Pattern
Strategy are executed, and this recursively.

Example 1. Combination of the Domain-Driven Pattern Strategy and a Callback

The model-driven strategy in-depth navigates over the model. There is a pattern for each kind
of model element with a containment relationship (e.g., Package, Class, Attribute, Operation). In
the following picture, for each Pattern, methods before and after a callback enable to easily
generate an XML-like file with open and close sections.

<EPackage name="“P"> Orchestration
<EClass name=“C1">

) Organize method cals:
<EAttribute = “A1">

= before - [MethodCal]
——| | #7[Calback to Strategy/Task]

</EAttribute = “A1"> = after - [MethodCal]

</EClass name=“C1">
</EPackage name="“P">

Figure 17. An XML-like file generated by a Callback

Example 2. Specification of Callback handler in the Production Plan

In a Production Plan, a Callback handler enables to specify a Java Class that will be called when a
Callback is encountered in a Pattern orchestration.

Specification of the Java Class in the production plan

=12 [Productvon‘Plan]) Orchestration
= & [Production Plan Invocation] -> Pattern Task [Task Java]
= % [Invocation Contract Container] Organize method calis:
1% [Invocation Contract] -> pattern.id [In] [Contract] i“f“body - [MethodcCal]
1% [Invocation Contract] -> domain [In] [Contract] -‘?[Calback to Strategy/Task]
—_— # 1% [Invocation Contract] -> pattern.cal.back.handler [In] [Contract]

Pattern orchestration

Figure 18. Specification of Callback handler in a Production Plan

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 13| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

Pattern Substitution

Pattern substitution A pattern substitution replaces a Pattern by a list of Patterns. This list

-~ ~

- can be empty (for annihilating a Pattern), another Pattern, or a list of
1_5 _substitutes other Patterns (for replacing one Pattern by several). This mechanism
- P enables to adapt a generation to a specific context. It is for instance

used for definition of families of Pattern-based code generation.

Principle

Pattern substitution is a means to customize a Factory Component using a Pattern-based
transformation. In the following picture, an initial Factory Component, at the top, contains a
Pattern Library with two Patterns used in a Production Plan. Another Factory Component, at the
bottom, contains a Pattern which substitutes the second Pattern by this Pattern.

Reused Factory Component

=~ H R T~ H SR~
!5 contains >,\\ \ _ contains ¢ i /\/
EE. Pattern
Factory Component PatternAlerary i~
: iexecutes A
. 1
1 i 1
I 4>0' 1
! 0 1
| Production Plan 1
: (workflow) :
! 1
1 reuse 1 Customization by substitution
: FC for Customization :
| 1
_d

= —_ , -~
contains _,~~ >\ contains - N .
> EE/—’(__// Difference

: Pattern
Factory Component Battom Library

Figure 19. Customization of Factory Component by Pattern substitution

The following first example details this principle of customization. There exist two substitutions:

¢ The Pattern P1 of an initial Factory Component is replaced by the Patterns PA and PB.
* The Pattern P2 of an initial Factory Component is replaced by the Patterns PC and P2.

Remarks:

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 14| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

* The order of declaration is important. For instance, replacing P2 by PC and P2 is different
from replacing by P2 and PC.
* For inhibiting P2, the substitution consisting in replacing P2 by an empty list.

d% In the Reused Factory Component

e == a——

Initial Patterns q :EE\/M"&%P/,{——» (PA Sand (PB)

~ ~

—> Pattern Library

——— ——— PrE——

> P/~ -->{(Pc Jand (P2)

- — — S —

atterns Executed with substitution

Customization i
by substitution % In the Factory Component for Customization
L " L Substitutions
Patterns for C pp——T1—>CPA > P —(Pa D
substitution R 4
Pattern Libra agii ~ D,
- v LD =
P {p2 p(Pc >
——(_PC) Tt ===
S——— P2

Figure 20. Example 1 of customization by Pattern substitution

In the second example:

e “Pattern_UC2_1_Main” is the reusable Factory Component.
0 It has two parameters: 1) a Domain model, 2) a Pattern substitution.
0 It contains a Pattern Library with two Patterns (i.e., uc2_1_ClassPattern and
uc2_1 AttributePattern).
0 It uses a Domain-Driven Pattern Strategy which consumes the Domain model, the
Pattern Library, and the Pattern substitution. If the substitution is empty, then
Pattern Library is applied, else the Pattern Library is applied with the substitution.
e “Pattern_UC2_1 SinglePatternSubstitution” is the Factory Component which customizes
“Pattern_UC2_1 Main”:
0 It declares an EMF model for Domain model.
0 It contains one Pattern “uc2_1_AttributePatternSubstitution1”.
0 The Production Plan calls “Pattern_UC2_1_Main” with the EMF model and the
substitution of “uc2_1_AttributePattern” by
“uc2_1_AttributePatternSubstitution1”.

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 15| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

When the Pattern “Pattern_UC2_1 SinglePatternSubstitution” is executed, the Pattern

“Pattern_UC2_1_Main” is executed by with the Pattern “uc2_1_AttributePatternSubstitution1”
instead of the Pattern “uc2_1_AttributePattern”.

g orm: fpluginforg. eclipse.egf .usecase, pattern.uczfegf fPattern_UCZ_ 1 SinglePatternsubstitu, ..] [0 EclipseiPlatformiMDK-MA-3, 0, 0worklqualificationorg. eclipse. egf. usecase . pattern, uc2]
= lL Pattern_UC2_1_Main [Factory Component]
[Contract Container]
= domaln [In] [Fackary Component Cantrack]
[Type Domain]
= EI pattern.substitutions [In] [Factory Component Contract]
%o [Type Pattern Substitution]
{ B9 [Viewpoint Container]
42 [Pattern Yiewpaint]
(=5 eafuc2_1.main [Library]
@i ucZ_1_ClassPattern [Pattern]
e ucZ_1_AttributePattern [Pattern]
[=-%g [Production Plan]
S [Production Plan Invocation] -> Domain Driven Pattern Strategy Task [Task Java]
= 1:1, [Invocatlon Contract Container]
domain [In] [Invocation Contract]
atkern.ids [In] [Invocation Contract]
f-, [Type Pattern List]
ﬁ" patkern.substitutions [In] [Inwocation Contract]
= L_. Pattern_UCZ_1_SinglePatternsubstitution [Factory Component]
f "1 | [viewspoint Container]
E-¥% [Domain Yiewpaint]
[platForm:/pluginforg. edlipse. eqf.madelimaodel{Frare ecore] [EMF Domain]
= |’_“-, [Pattern Viewpaint]
=3 eaf.uc2_1 substitution, single [Library]
I uc2_1_attributePatternsubstitutionl [Pattern]
= % [Production Plan]
= t§>@ [Productlon Flan Invaocation] - = Pattern_UCZ_1_Main [Factory Companent]
I [Irvvocation Conkract Containet]
domain [In] [Invocation Contract]
i EMFDomain [Type Domain]
I=-4=| pattern.substitutions [In] [Invocation Contract]
=EcY [Type Pattern Subskitution]

sucy | AttribubePattern <-egfiucZ_1imain [Library *attarm_L _Main [Factor ponent] [Subst

= Properties 52 El console| @ Error Log | & |5 gl Sl
Property Yalug

= Data
Replaced Elernent @ivucZ_1_aktributePattern <- egf.ucZ_L.main [Library] <- Patkern_UCZ_1_Main [Factory Component] [Pattern]
Replacement wivucz_1_attributePatternsubstitution] <- eqf.uc2_1.substitution.single [Library] <- Pattern_UCZ_1_SinglePatternSubstitution [Factory Compaonent] [Pattern]

[= Creerview
Description
o} _4LQgoFnpEd-nCMahxydzRg
Marne u=

Figure 21. Example 2 of customization by Pattern substitution

Customization at different levels

Pattern substitution is a powerful mechanism which enables to customize a pool of Patterns at
different levels of definition. The methodological principle consists in defining a core of basic
Patterns, sometimes very poor, enriched and fleshed out by Patterns which customize them by
substitution. This principle is replicable multiple times. Customization creates a tree in under to
split and isolate different branches of customization. This enables for instance to create
Enterprise generation portfolio refined to fit different team or project concerns.

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 16 |Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Example

i’ EV Code/textual generation
for my organization

Enterprise Portfolio

\ extends

é e & 5 Specific generation

for my project

Team Portfolio

Figure 22. Successive levels of customization

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 17| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

Pattern Merge

Pattern Merge A Pattern merge is an operation implemented by a Task which merges

q p P two Pattern substitution lists.
P (3/
q > e

===—""merges

The following example shows a Pattern merge Task in the Production Plan:

The first parameter, “base”, is a Pattern substitution which contains two substitutions:
0 “uc2_1_AttributePattern” substituted by “uc2_2_AttributePatternSubstitution2”
0 “uc2_1_ClassPattern” substituted by “uc2_2_ClassPatternSubstitution2”)

The second parameter, “addition”, is the content of the Factory Component Contract
“pattern.substitutions”

The third parameter, “composed substitution”, is the result of merge operation of
“base” with “addition”.

The merge result is next used in the Production Plan by the call to the “Pattern_UC2_1_ Main”

for the Pattern substitution. The principle of “Merge + Substitution” transmitted to Factory
Component contract can be used by each “customizable” Factory Component.

= Lﬁ, [Contract Container]
= |_';E| pattern.substitutions [In] [Factory Component Conkract]
%2 [Type Pattern Substibution]
=97 [Wigwpaint Container]
-3 [Damain Yiewpoink]
= [:_‘I [Pattern Yiewpoint]
=3 egf.ucz_2.substitution.merge [Library]
w10 uce_2_attributePatternSubstitution [Pattern]
10 ucZ2_2_ClassPatternsubstitution? [Pattern]
= [Praduction Flan]
=t Patbern Merge [Production Plan Invocation] - = Substitution composition Task [Task Javal
= I{_E [Irvocation Contrack Conkainer]
= ¢_E| base [In] [Invocation Contract]
=I-%% [Type Pattern Substitution]

= M Pattern_UC2_2_MergingPatternsubstitution [Fackory Component]

925 ucz_1_aktributePattern <- eaf.ucZ_1.main [Library] <- Pattern_I0CZ_1_Main [Factory Component] [Substitution]

- QZ@ ucz_1_ClassPattern <- eqf.ucz_1.main [Library] <- Pattern_UCZ2_1_Main [Factory Component] [Substitution]
ﬁ addition [In] [Invocation Contract]

{El composed substitution [Out] [Invocation Contract]
=Ty [Production Plan Invocation] - Pattern_IDC2_1_Main [Factory Component]
=47 [Irevocation Contract Containgr]

=l-4=| domain [In] [Invocation Conkrack]

128, EMFDomain [Tvpe Domain]
ﬁ pattern. substitutions [In] [Inwvocation Contract]

Figure 23. Example of Pattern merge

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf

18| Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Pattern Comparison

Pattern Comparison For Pattern edition, when the number of Patterns rises up, Pattern

(,———~<>, ————— N comparison compares of a Patterns with its Super-Patterns, or
--------- Patterns with its cousins.

After selection of a Pattern, a comparison, by right-click, enables to compare the selected with
its Super- and Child-Patterns. Multi-selection enables comparison of cousin Patterns. Live
edition of compared Patterns is allowed.

@ - [pattern.hierarchy].body | SuperPattern - [pattern.hierarchy].body

{g ChildPattern - [pattern.hierarchy].footer [SuperPattern - [pattern.hierarchy).footer
{2 chidpattern - [pattern.hierarchy).header { SuperPattern - [pattern.hierarchy].header
&
&

ChildPattern - [pattern.hierarchyl.init / SuperPattern - [pattern.hierarchy].init
ChildPattern - [pattern.hierarchy].preCondition / SuperPattern - [pattern.hierarchy).preCondition

@TextCompae [QHQSL?C?_J lb{..}t\"@@
//Pattern comparison //Pattern comparison

I am the super-pattern I amm the child pattern

// End of comparison // End of comparison

Figure 24. Example of Pattern comparison

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 19| Page
© 2014 by Thales; made available under the EPL v1.0

a EGF | PATTERN

Eclipse Generation Factories

PROCESS

The section presents the process dimension from the designer and developer viewpoints.

Designer viewpoint

> Create > > Edit Pattern >
Pattern
Designer \,__\/

(

~ -

T —— -

Pattern

> Def;r:rea:’eattern > r—
= Task /

Figure 25. Process — Designer Viewpoint

\/

Create Pattern The Designer creates a Pattern. He considers all the architecture
aspects, such as Pattern hierarchy, Pattern dependencies, Factory
Component customization, Pattern substitution, generation framework,
or product-line with Patterns.

Edit Pattern The Designer edits the elements of the Pattern specification (e.g.,
Pattern parameters) and implementation e.g., methods, method

orchestration).

Define Pattern Strategy The Designer defines all the elements of a Pattern Strategy (e.g.,
algorithm, Pattern Strategy Task Contracts).

Table 1. Designer activities

The definition and implementation of a Pattern Strategy is limited to the advanced users of
Patterns because it requires a good practice of Patterns and need of new strategy.

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 20| Page
© 2014 by Thales; made available under the EPL v1.0

@ EGF

Eclipse Generation Factories

Developer viewpoint

Implement
Pattern Strategy

Develop Pattern

Developer

.~ ———

\ Pattern /

Figure 26. Process — Developer Viewpoint

Develop Viewpoint The Developer implements the Pattern methods in a language with
conforms to the Pattern nature.

Implement Pattern Strategy The Developer implements the Pattern Strategy.

Table 2. Developer activities

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 21| Page
© 2014 by Thales; made available under the EPL v1.0

