
EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 1 | P a g e

© 2014 by Thales; made available under the EPL v1.0

PATTERN
Author: Benoît Langlois – benoit.langlois@thalesgroup.com

Version: 1.0

DEFINITION

A Pattern is a means to apply a systematic transformation (e.g., model-to-text) onto a resource.

OBJECTIVES

The objectives of a Pattern are to:

 Provide a formalism to express systematic transformation onto a resource.

The interests are to:

 Create and promote transformation portfolios,

 Adapt a portfolio to a new context and promote it as a new portfolio.

CONCERNS

• In a production plan of a Factory Component, the designer declares patterns used

and the way to apply them.

• The developer defines the pattern specification (i.e., the external view of a

pattern).

• The developer implements the pattern implementation (i.e., the internal view of a

pattern).

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 2 | P a g e

© 2014 by Thales; made available under the EPL v1.0

STRUCTURE

Figure 1. Pattern at the metamodel level

Comprehension:

• A Pattern Library contains a set of Patterns.

• A Pattern is a declarative formalism to process a resource. For instance, a set of Package,

Class, Attribute and Operation Patterns are applied over a model which is a hierarchy of

Packages, Classes, Attributes and Operations.

• For presentation, a Pattern is made of two main parts:

o Specification part. A Pattern has a name and has a Nature, especially to identify the

language used to implement the Pattern. A Pattern can inherit from a Pattern for

inheritance of all the Pattern properties (e.g., Variables, Methods). In the

specification part, Pattern Parameters define the Pattern call context, like a method

is called with parameters. Default Pattern Parameters are Ecore metaclasses but the

Pattern Parameter type is open to any Emf class and Java type. (Cf. Figure 2.)

o Implementation part. This part identifies the local Variables, the Pattern Methods,

and the Method orchestration. (Cf. Figure 3.)

• Pattern Methods. Several types of Pattern Methods exist:

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 3 | P a g e

© 2014 by Thales; made available under the EPL v1.0

o A Header method localizes the declaration part of the Pattern implementation.

o A set of Pattern methods are declared with their name and description

corresponding to a method body. This description conforms to the language

identified by the Pattern Nature. For instance, Pattern with the Java Nature has

methods implemented in Java.

o The Footer method localizes the final declaration of a Pattern implementation.

o An Init Method enables to initialize the Pattern Variables.

o The PreCondition Method enables to execute or not a Pattern when the

PreCondition is satisfied or not.

• Pattern Orchestration. It enables to order the Pattern Method calls. Several kinds of Pattern

Calls exist:

o Method Call. It is a simple call a Pattern Method identified by its name (e.g., body).

o Super-Pattern Call. This enables to apply the orchestration defined in the Super-

Pattern, and this recursively in the Pattern hierarchy. Patterns in the same Pattern

hierarchy must have the Pattern Nature.

o Pattern Call. This enables to call a Pattern as a Pattern Method. It offers the

mechanism of delegation. A Pattern Parameter association links each Parameter of

the called Pattern to a Pattern Parameter value of the calling Pattern. Pattern Call

allows calling Patterns with different Pattern Natures (e.g., a Java Pattern can call a

Jet Pattern, and reciprocally).

o Callback. Suppose that you want to automatically open and close sections at

different levels of definition, such as a Package contains Packages or Classes, and a

Class contains Attributes or Operations. A Callback method is a kind of breaking

point: all the Calls before the Callback correspond to a begin section with the current

Pattern context (e.g., the Class Pattern context); Calls after the Callback correspond

to the end section; a Callback method enables to delegate work to other Patterns

(e.g., to Attribute and Operation Patterns when it is time to process Attributes and

Operations of the current Class).

o Pattern Injection Call. A Pattern Injection corresponds to a set of Pattern Calls for

each value of a query result.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 4 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Figure 2. Pattern Specification part

Figure 3. Pattern Implementation part

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 5 | P a g e

© 2014 by Thales; made available under the EPL v1.0

EXAMPLES

Figure 4 shows a Factory Component with two Patterns, “classPattern” and “attributePattern,

which respectively display the Class names, and the Attributes names of each Class. The

specification and implementation parts of the classPattern are shown in Figure 2 and Figure 3.

Code of the classPattern and attributePattern body methods (see Figure 5 and Figure 6) is

written in Jet. The Domain is the EGF Fcore model (see Figure 4 in the Domain Viewpoint part).

Patterns are applied with the “Domain Driven Pattern Strategy” Task (see Figure 4 in the

Production Plan) which applies Patterns over the Fcore model. The result is shown in Figure 7.

Figure 4. Example of Factory Component with Class and Attribute Patterns

Figure 5. Implementation of the classPattern body method

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 6 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Figure 6. Implementation of the attributePattern body method

Result of pattern:

- Hello ModelElement Class
 - iD attribute
 - description attribute
- Hello NamedModelElement Class
 - name attribute
- Hello Activity Class
- Hello Contract Class
 - mandatory attribute
 - mode attribute
- Hello FactoryComponent Class
- Hello ContractContainer Class
- Hello FactoryComponentContract Class
- Hello ViewpointContainer Class
- Hello Viewpoint Class
- Hello Orchestration Class
- Hello OrchestrationParameterContainer Class
- Hello OrchestrationParameter Class
- Hello Invocation Class
- Hello InvocationContractContainer Class
- Hello InvocationContract Class

 Figure 7. Result in the console

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 7 | P a g e

© 2014 by Thales; made available under the EPL v1.0

PATTERN STRATEGIES

A Pattern is only a process unit. As quickly introduced in the example, a Strategy determines the

way to apply Patterns over a resource (e.g., an Ecore model, File). The following sections

present the two Strategies provided with EGF. Other strategies can be developed (e.g., in-large

navigation, navigation managing proprieties for model transformations). A Pattern Strategy,

which is a Task, requires parameter values (i.e., contract values), which can be considered as the

interface signature of the Strategy. Those parameters emphasize the interest of decoupling

concerns, for instance decoupling model-to-text transformation from its output devoted to a

reporter which can be changed at any time when it is considered as a parameter value.

Domain Driven Pattern Strategy Task

Strategy description

While the domain resource is parsed (e.g., an EMF model), a set of patterns are applied.

Interface
Name Type Description Optional

domain Domain Domain resource to be

processed by the patterns.

No

pattern.execution.reporter PatternExecutionReporter Reporter Class responsible for

the output of model-to-text

transformation. The default

output is the console.

Yes

pattern.call.back.handler PatternCallBackHandler Callback Class called for a Java

callback.

Yes

pattern.domain.driven.visitor PatternDomainVisitor Visitor Class called when each

domain element is visited.

Yes

pattern.ids Ordered list of Patterns

and PatternLibrary

Patterns or Pattern Libraries to

be applied onto a resource.

No

pattern.substitutions PatternSubstitution A Pattern substitution is a list of

Pattern replacements. A

replacement consists in replacing

Patterns in pattern.ids by other

patterns.

Yes

Pattern.output.processor PatternOutputProcessor For model-to-text

transformation, a Class which

post-processes the result of a

reporter.

Yes

Algorithm

In-depth navigation over a domain. For each Domain element:

For each Pattern of pattern.ids:

Apply the Pattern on the current element

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 8 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Driven Strategy Task

Strategy description

An ordered list of patterns is successively applied to each element of a domain resource.

Interface

Same interface than the “Domain Driven Pattern Strategy Task”.

Algorithm

For each Pattern of Pattern Libraries:

In-depth navigation over a domain. For each Domain element:

Apply the Pattern on the current element

Figure 8. General process with the application of a Pattern Strategy

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 9 | P a g e

© 2014 by Thales; made available under the EPL v1.0

PATTERN RELATIONSHIPS

An issue with Patterns is to articulate Patterns together and Pattern Strategy Parameter values.

This section explains every kind of Pattern relationship, even if some of them were already

presented.

Pattern inheritance

The following picture shows that the HelloWorld Pattern inherits of methods from its Hello

Super-Pattern for its orchestration.

Figure 9. Super-Pattern method inheritance

A “Call to super pattern orchestration” in the Pattern orchestration enables to abstract and

ignore the Super-Pattern orchestration.

Figure 10. Super-Pattern method inheritance

Like Class inheritance, Pattern inheritance enables to communalize

properties (i.e., Pattern Parameters, Pattern variables, methods, method

orchestration) in a mono-inheritance Pattern hierarchy.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 10 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern delegation (aka Pattern call)

The following picture presents the call to the HelloFriends Pattern by the HelloWorld Pattern.

Figure 11. Pattern delegation – Pattern Call in the Pattern orchestration

The following picture shows how to reuse a common behavior, Displaying Annotations, for the

Ecore EClass and EAttribute Classes.

Figure 12. Pattern delegation – Reuse of behavior

The multilingual call corresponds to a Pattern Delegation where Pattern natures are different.

For instance, a Pattern with a Jet nature calls a Pattern with a Java nature in order to differently

process the same resource. A warning: the model-to-text processing and Java call have two

different lifecycles; then, the result of the Java calls can be achieved before the end of the Jet

processing.

In a Pattern orchestration, Pattern delegation enables problem

decomposition and reuse of patterns in different contexts. The

orchestration of the called pattern is applied. The Pattern caller provides

parameter values to the called pattern. The parameter values are

statically declared at the pattern definition.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 11 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Injection

In the following example, “ClassPattern” calls by injection “ForInjectionPattern”.

Figure 13. Pattern injection - Patterns

The Pattern Parameter of the injected Parameter is associated to a query (“Injection query” in

the example). The Pattern is applied for each element of the query result, in the example for

each ENamedElement of the Class.

Figure 14. Pattern injection – Pattern for injection – Specification part

A Pattern injection corresponds to a Pattern Delegation, but the

value of a Pattern parameter is dynamically set at pattern execution

with a query.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 12 | P a g e

© 2014 by Thales; made available under the EPL v1.0

In order to be recognized, in the plugin.xml, an extension declares the query name and Class

which implements the query.

 <extension
 point="org.eclipse.egf.pattern.query">
 <query
 class="org.eclipse.egf.usecase.pattern.uc1.query.ContentQuery"
 id="org.eclipse.egf.usecase.pattern.uc1.query1"
 name="Injection query">
 </query>
 </extension>

 Figure 15. Example of extension for a query declaration

The following code exemplifies a query implementation.

public class ContentQuery implements IQuery {

 public List<Object> execute

(ParameterDescription parameter,
 Map<String, String> queryCtx, PatternContext context) {

 String type = parameter.getType();
 Object loadClass =
 RuntimeParameterTypeHelper.INSTANCE.loadClass(type);
 if (!(loadClass instanceof EClass))
 throw new IllegalStateException(EGFPatternMessages.query_error1);

 Collection<EObject> domain =

((EObject) context.getValue(PatternContext.INJECTED_CONTEXT))
.eContents();

 if (domain == null)
 throw new IllegalStateException(EGFPatternMessages.query_error8);

 SELECT query = new SELECT(new FROM(domain),

new WHERE(new EObjectTypeRelationCondition((EClass)
loadClass,
TypeRelation.SAMETYPE_OR_SUBTYPE_LITERAL)));

 IQueryResult result = query.execute();
 if (result.getException() != null)
 throw new IllegalStateException(result.getException());
 return new ArrayList<Object>(result.getEObjects());
 }

}

 Figure 16. Example of code for a query

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 13 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Callback

Example 1. Combination of the Domain-Driven Pattern Strategy and a Callback

The model-driven strategy in-depth navigates over the model. There is a pattern for each kind

of model element with a containment relationship (e.g., Package, Class, Attribute, Operation). In

the following picture, for each Pattern, methods before and after a callback enable to easily

generate an XML-like file with open and close sections.

Figure 17. An XML-like file generated by a Callback

Example 2. Specification of Callback handler in the Production Plan

In a Production Plan, a Callback handler enables to specify a Java Class that will be called when a

Callback is encountered in a Pattern orchestration.

Figure 18. Specification of Callback handler in a Production Plan

A Callback is a breaking point in the Pattern orchestration. When a

Callback is encountered, the current Pattern orchestration is stopped; it

continues when all the next Patterns to be executed by the Pattern

Strategy are executed, and this recursively.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 14 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Substitution

Principle

Pattern substitution is a means to customize a Factory Component using a Pattern-based

transformation. In the following picture, an initial Factory Component, at the top, contains a

Pattern Library with two Patterns used in a Production Plan. Another Factory Component, at the

bottom, contains a Pattern which substitutes the second Pattern by this Pattern.

Figure 19. Customization of Factory Component by Pattern substitution

The following first example details this principle of customization. There exist two substitutions:

• The Pattern P1 of an initial Factory Component is replaced by the Patterns PA and PB.

• The Pattern P2 of an initial Factory Component is replaced by the Patterns PC and P2.

Remarks:

A Pattern substitution replaces a Pattern by a list of Patterns. This list

can be empty (for annihilating a Pattern), another Pattern, or a list of

other Patterns (for replacing one Pattern by several). This mechanism

enables to adapt a generation to a specific context. It is for instance

used for definition of families of Pattern-based code generation.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 15 | P a g e

© 2014 by Thales; made available under the EPL v1.0

• The order of declaration is important. For instance, replacing P2 by PC and P2 is different

from replacing by P2 and PC.

• For inhibiting P2, the substitution consisting in replacing P2 by an empty list.

Figure 20. Example 1 of customization by Pattern substitution

In the second example:

• “Pattern_UC2_1_Main” is the reusable Factory Component.

o It has two parameters: 1) a Domain model, 2) a Pattern substitution.

o It contains a Pattern Library with two Patterns (i.e., uc2_1_ClassPattern and

uc2_1_AttributePattern).

o It uses a Domain-Driven Pattern Strategy which consumes the Domain model, the

Pattern Library, and the Pattern substitution. If the substitution is empty, then

Pattern Library is applied, else the Pattern Library is applied with the substitution.

• “Pattern_UC2_1_SinglePatternSubstitution” is the Factory Component which customizes

“Pattern_UC2_1_Main”:

o It declares an EMF model for Domain model.

o It contains one Pattern “uc2_1_AttributePatternSubstitution1”.

o The Production Plan calls “Pattern_UC2_1_Main” with the EMF model and the

substitution of “uc2_1_AttributePattern” by

“uc2_1_AttributePatternSubstitution1”.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 16 | P a g e

© 2014 by Thales; made available under the EPL v1.0

When the Pattern “Pattern_UC2_1_SinglePatternSubstitution” is executed, the Pattern

“Pattern_UC2_1_Main” is executed by with the Pattern “uc2_1_AttributePatternSubstitution1”

instead of the Pattern “uc2_1_AttributePattern”.

Figure 21. Example 2 of customization by Pattern substitution

Customization at different levels

Pattern substitution is a powerful mechanism which enables to customize a pool of Patterns at

different levels of definition. The methodological principle consists in defining a core of basic

Patterns, sometimes very poor, enriched and fleshed out by Patterns which customize them by

substitution. This principle is replicable multiple times. Customization creates a tree in under to

split and isolate different branches of customization. This enables for instance to create

Enterprise generation portfolio refined to fit different team or project concerns.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 17 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Figure 22. Successive levels of customization

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 18 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Merge

The following example shows a Pattern merge Task in the Production Plan:

• The first parameter, “base”, is a Pattern substitution which contains two substitutions:

o “uc2_1_AttributePattern” substituted by “uc2_2_AttributePatternSubstitution2”

o “uc2_1_ClassPattern” substituted by “uc2_2_ClassPatternSubstitution2”)

• The second parameter, “addition”, is the content of the Factory Component Contract

“pattern.substitutions”

• The third parameter, “composed substitution”, is the result of merge operation of

“base” with “addition”.

The merge result is next used in the Production Plan by the call to the “Pattern_UC2_1_Main”

for the Pattern substitution. The principle of “Merge + Substitution” transmitted to Factory

Component contract can be used by each “customizable” Factory Component.

Figure 23. Example of Pattern merge

A Pattern merge is an operation implemented by a Task which merges

two Pattern substitution lists.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 19 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Pattern Comparison

After selection of a Pattern, a comparison, by right-click, enables to compare the selected with

its Super- and Child-Patterns. Multi-selection enables comparison of cousin Patterns. Live

edition of compared Patterns is allowed.

Figure 24. Example of Pattern comparison

For Pattern edition, when the number of Patterns rises up, Pattern

comparison compares of a Patterns with its Super-Patterns, or

Patterns with its cousins.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 20 | P a g e

© 2014 by Thales; made available under the EPL v1.0

PROCESS

The section presents the process dimension from the designer and developer viewpoints.

Designer viewpoint

Figure 25. Process – Designer Viewpoint

Create Pattern The Designer creates a Pattern. He considers all the architecture

aspects, such as Pattern hierarchy, Pattern dependencies, Factory

Component customization, Pattern substitution, generation framework,

or product-line with Patterns.

Edit Pattern The Designer edits the elements of the Pattern specification (e.g.,

Pattern parameters) and implementation e.g., methods, method

orchestration).

Define Pattern Strategy The Designer defines all the elements of a Pattern Strategy (e.g.,

algorithm, Pattern Strategy Task Contracts).

Table 1. Designer activities

The definition and implementation of a Pattern Strategy is limited to the advanced users of

Patterns because it requires a good practice of Patterns and need of new strategy.

EGF PATTERN

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 21 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Developer viewpoint

Figure 26. Process – Developer Viewpoint

Develop Viewpoint The Developer implements the Pattern methods in a language with

conforms to the Pattern nature.

Implement Pattern Strategy The Developer implements the Pattern Strategy.

Table 2. Developer activities

