
PTP User-Developer Workshop Sept 18-20, 2012

Using Eclipse CDT/PTP
for Static Analysis

Beth R. Tibbitts IBM STG
tibbitts@us.ibm.com

"This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA)
under its Agreement No. HR0011-07-9-0002"

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

2

Outline

• Basics of static analysis
• What CDT provides :

 AST: how to inspect it; how to walk it
 CODAN (Code Analysis) in CDT

• Additional info built by PTP/PLDT for analysis
 Call graph (incl recursion)
 Control flow graph
 Data dependency (partial) PLDT = Parallel Language

Development Tools:
“the analysis part of PTP”

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

3

What is static analysis?
•  Static code analysis is analysis of a computer program that is

performed without actual execution - analysis performed on executing
programs is known as dynamic analysis. !

  Usually performed on some intermediate representations of the source code. !
  Routinely done by compilers in order to generate and optimize object code!

•  Motivation:!
  Deriving properties of execution behavior or program structure!
  Various forms of analysis and refactoring!
  Lots more in JDT (Java Development Tools in Eclipse)!

What can I find out about my C/C++
program?

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

4

CDT Introspection Components

•  Knowledge about the user’s source code is stored in
the CDT’s DOM: Document Object Model

•  Two components of DOM
  DOM AST concentrate here

  Abstract Syntax Tree that stores detailed structural information
about the code

  Index
  Built from the AST
  Provides the ability to perform fast lookups by name on

elements
  Persistent index called the PDOM (persistent DOM)

Ref: EclipseCon 2007, “C/C++ Source Code Introspection Using the CDT”, Recoskie & Tibbitts

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

5

What is this information
used for in CDT?

• Search
• Navigation
• Content Assist
• Call Hierarchy
•  Type Hierarchy
•  Include browsing
• Dependency scanning
• Syntax highlighting
• Refactoring

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

6

Abstract Syntax Tree: AST

• Maps C/C++ source code info onto
a tree structure
 A tree of nodes, all subclasses of

 org.eclipse.cdt.core.dom.ast.IASTNode
 Nodes for: functions, names, declarations, arrays,

expressions, statements/compound statements, etc.
 Src file root: IASTTranslationUnit

 Correlates to a source file: myfile.c
 Tree structure eases analysis
 Knows relationships (parent/child)
 Easy traversal (ASTVisitor)
 … etc

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

7

Existing CDT views that use structure include….

 CDT Call Hierarchy view

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

8

CDT DOM AST View

• Graphical inspection of AST

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

9

CDT’s DOM AST View
- Installation

• Formerly available in CDT Testing feature:
 org.eclipse.cdt.ui.tests package

• But … in CDT 8.1/Juno … DOM AST View is no
longer built/installable with CDT

 But you can…
 Run it in a runtime workspace from the CDT source projects!

1.  Check out the git repository of CDT source code
  http://wiki.eclipse.org/Getting_started_with_CDT_development

2.  Launch a runtime workspace (with CDT from your dev eclipse
install – or source) with these two projects from your
workspace:
  org.eclipse.cdt.core.tests
  org.eclipse.cdt.ui.tests

(perhaps because its
stability is questionable)

Still useful as a tool to
understand CDT ASTs

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

10

Sample AST (Abstract Syntax Tree)
- tree structure representation of C program

// walkast_edge.c	
#include <stdio.h>	

3 void edge(int a) { 	
4 int x,y;	
5 if(a>0) 	
6 x=0;	
7 else 	
8 x=1;	
9 y=x;	
 }	
 int foo(int bar){	
 int z = bar;	
 return z;	
 }	

From EclipseCon 2008 reference

edge

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

11

AST Samples
Several examples of using CDT’s AST and walking with the

visitor pattern are in “Static Analysis in PTP with CDT”
presented at EclipseCon 2008 (B. Tibbitts)

Code for tree walking is in sample plugin
 In PTP git repo: org.eclipse.ptp/tools/samples/

 Project org.eclipse.ptp.pldt.sampleCDTstaticAnalysis

Walk
AST

Show
Call
Graph

Show
Control Flow
Graph

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

12

Relook at DOM AST View: see depth parsed

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

13

AST: what we do with it
PTP/PLDT provided structures

• Find Location of artifacts (API calls etc):
MPI, OpenMP, UPC, OpenSHMEM, OpenACC
 with AST walking (not a simple text search)

• MPI Barrier Analysis: deadlock detection

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

14

Constructed by PTP’s PLDT:

• Call Graph
  A partial Call Graph is also constructed by CDT Call Hierarchy view

• Control Flow Graph
• Dependency Graph (Defined/Use Chain: partial)
In order to do:
• MPI Barrier Analysis: detect deadlocks; find

concurrently executed statements

Caveats:
• C only (not C++)
• No UI - structures used for analysis only

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

15

Control Flow Graph

• A control flow graph (CFG) is a representation of all
paths that might be traversed through a program
during its execution. Each node in the graph
represents a basic block, i.e. a straight-line piece of
code with a single point of entry and a single point of
exit!

• A Statement Level CFG is a CFG with individual
statements instead of larger basic blocks. !
 PLDT builds a statement level CFG as described here!

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

CDT’s Codan

• Codan (Code Analysis) - lightweight static analysis
framework in CDT that allows pluggable "checkers"
which can perform real time analysis on the code to
find common defects, violation of policies, etc.
 Finds errors as you type
 Quick fixes often available

• Integrate an external code checker into Eclipse CDT
https://www.ibm.com/developerworks/java/library/
j-codan/

• External checker cppcheck integrated with codan:
http://alexruiz.developerblogs.com/?p=2231

16

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

Codan

•  Finds errors as
you type

•  Provides quick
fixes

17

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

References

• Parallel Tools Platform eclipse.org/ptp
• C/C++ Development Tools eclipse.org/cdt

• CDT’s CODAN (Code Analysis)
  http://wiki.eclipse.org/CDT/designs/StaticAnalysis
  Codan: a C/C++ Static Analysis Framework for CDT –

http://www.slideshare.net/laskava/eclipse-con2011-v11
  Integrate an external code checker into Eclipse CDT

https://www.ibm.com/developerworks/java/library/j-codan/
• Static Analysis with CDT in PTP – EclipseCon 2008

  http://www.eclipsecon.org/2008/?page=sub/&id=373

18

Copyright © IBM Corp., 2012!

Using Eclipse CDT/PTP for Static Analysis

19

Summary
• CDT has the basics for Static Analysis, including

AST (Abstract Syntax Tree)
• Other useful structures are built by PTP’s PLDT

  Call Graph, Control Flow Graph, Dependency Graph, etc.
  These graphs make analysis more straightforward

• CDT provides Code Analysis (Codan) for a framework to provide
pluggable static syntax checkers, etc.

  Quickly notify user of common errors, policy violations, etc.

