
Introduction To Model-to-Model Transformation

© 2008 INRIA 1

Introduction To
Model-to-Model Transformation

Hugo Bruneliere & Frédéric Jouault

INRIA  

Introduction To Model-to-Model Transformation

© 2008 INRIA 2

Context of this work

• The present courseware has been elaborated in the context of the
MODELPLEX European IST FP6 project (http://www.modelplex.org/).
• Co-funded by the European Commission, the MODELPLEX project

involves 21 partners from 8 different countries.
• MODELPLEX aims at defining and developing a coherent

infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems within a
variety of industrial domains.
• To achieve the goal of large-scale adoption of MDE, MODELPLEX

promotes the idea of a collaborative development of courseware
dedicated to this domain.
• The MDE courseware provided here with the status of open-source

software is produced under the EPL 1.0 license.

http://www.modelplex.org/

Introduction To Model-to-Model Transformation

© 2008 INRIA 3

Outline

• The Eclipse-M2M ATL Component
• Overall presentation
• How to get the ATL plugins

• M2M Transformation Principles
• Main concepts & schema of principles

• M2M with ATL
• Mapping of the M2M principles within the context of ATL
• Overview of the language

• Writing a First Transformation with ATL
• ATL Perspective
• ATL module
• Simple matched rules
• Helpers
• Running the transformation (launch configuration)

Introduction To Model-to-Model Transformation

© 2008 INRIA 4

The Eclipse-M2M ATL Component

• ATL: a key part of the Eclipse-M2M project (Modeling)

Introduction To Model-to-Model Transformation

© 2008 INRIA 5

The Eclipse-M2M ATL Component

• ATL homepage: http://www.eclipse.org/m2m/atl/

http://www.eclipse.org/m2m/atl/

Introduction To Model-to-Model Transformation

© 2008 INRIA 6

The Eclipse-M2M ATL Component

• Available resources:

• Use cases ! complete transformation scenarios covering many
different domains of application

• Basic examples ! very first transformation examples which
are interesting when starting with ATL (for beginners)

• ATL Transformations ! ATL Transformation Zoo which
gathers a hundred of various and varied transformations
implemented using ATL

• Download ! different binary builds of ATL available and also
additional information for using the ATL update site

Introduction To Model-to-Model Transformation

© 2008 INRIA 7

The Eclipse-M2M ATL Component

• Available resources:

• Documentation ! various kinds of ATL documents including a
reference manual, a user manual, installation instructions, etc

• Publications ! non-exhaustive list of papers presenting
different works involving or using (directly or indirectly) ATL

• Wiki ! an open section dedicated to ATL on the Eclipse Wiki
which allows the community to consult or/and add information
about ATL

• Newsgroup ! a link to the Eclipse newsgroup dedicated to
the M2M project components (posts concerning ATL are
prefixed with the [ATL] tag)

Introduction To Model-to-Model Transformation

© 2008 INRIA 8

The Eclipse-M2M ATL Component

• How to get the plugins:

• Download the latest binary builds (frequently updated): http://
www.eclipse.org/modeling/m2m/downloads/?project=atl

• Use the M2M update site (M2M ATL SDK): http://
www.eclipse.org/modeling/m2m/updates/

• Install ATL sources from CVS (stable HEAD): http://
wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/

• Install ATL sources from CVS (development branch): http://
wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS

http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/updates/
http://www.eclipse.org/modeling/m2m/updates/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS

Introduction To Model-to-Model Transformation

© 2008 INRIA 9

M2M Transformation Principles

• A M2M transformation is the automated creation of m
target models from n source models
• Each model conforms to a given reference model (which can be the

same for several models)

• M2M transformation is not only about M1 to M1
transformations:
• M1 to M2: promotion,
• M2 to M1: demotion,
• M2 to M2 or M3 to M3
• M3 to M1, M3 to M2, etc.

Metametamodel

Metamodel

Terminal Model

M3

M2

M1

Introduction To Model-to-Model Transformation

© 2008 INRIA 10

M2M Transformation Principles

Introduction To Model-to-Model Transformation

© 2008 INRIA 11

M2M with ATL

• Application of the principles within the context of ATL

Introduction To Model-to-Model Transformation

© 2008 INRIA 12

M2M with ATL

• Overview of the language (1/6)

•Source models and target models are distinct:
•Source models are read-only (they can only be navigated, not

modified),
•Target models are write-only (they cannot be navigated).

•The language is a declarative-imperative hybrid:
•Declarative part:
• Matched rules with automatic traceability support,
• Side-effect free navigation (and query) language: OCL 2.0

•Imperative part:
• Called rules,
• Action blocks.

•Recommended programming style: declarative

Introduction To Model-to-Model Transformation

© 2008 INRIA 13

M2M with ATL

• Overview of the language (2/6)

•A declarative rule specifies:
•a source pattern to be matched in the source models,
•a target pattern to be created in the target models for each

match during rule application.

•An imperative rule is basically a procedure:
•It is called by its name,
•It may take arguments,
•It can contain:
• A declarative target pattern,
• An action block (i.e. a sequence of statements),
• Both.

Introduction To Model-to-Model Transformation

© 2008 INRIA 14

M2M with ATL

• Overview of the language (3/6)

•Applying a declarative rule means:
•Creating the specified target elements,
•Initializing the properties of the newly created elements.

•There are three types of declarative rules:
•Standard rules that are applied once for each match,
• A given set of elements may only be matched by one standard rule,

•Lazy rules that are applied as many times for each match as
it is referred to from other rules (possibly never for some
matches),
•Unique lazy rules that are applied at most once for each

match and only if it is referred to from other rules.

Introduction To Model-to-Model Transformation

© 2008 INRIA 15

M2M with ATL

• Overview of the language (4/6)

• Declarative rules: source pattern

•The source pattern is composed of:
•A labeled set of types coming from the source

metamodels
•A guard (Boolean expression) used to filter matches

•A match corresponds to a set of elements coming from the
source models that:
•Are of the types specified in the source pattern (one

element for each type)
•Satisfy the guard

Introduction To Model-to-Model Transformation

© 2008 INRIA 16

M2M with ATL

• Overview of the language (5/6)

• Declarative rules: target pattern

•The target pattern is composed of:
•A labeled set of types coming from the target

metamodels
•For each element of this set, a set of bindings
•A binding specifies the initialization of a property of a

target element using an expression
•For each match, the target pattern is applied:
•Elements are created in the target models (one for each

type of the target pattern)
•Target elements are initialized by executing the bindings:
•First evaluating their value
•Then assigning this value to the corresponding

property

Introduction To Model-to-Model Transformation

© 2008 INRIA 17

M2M with ATL

• Overview of the language (6/6)

• Execution order of declarative rules

•Declarative ATL frees the developer from specifying execution
order:
•The order in which rules are matched and applied is not

specified (remark: the match of a lazy or unique lazy rules
must be referred to before the rule is applied)
•The order in which bindings are applied is not specified

•The execution of declarative rules can however be kept
deterministic:
•The execution of a rule cannot change source models

➔ It cannot change a match
•Target elements are not navigable

➔ The execution of a binding cannot change the value
of another

Introduction To Model-to-Model Transformation

© 2008 INRIA 18

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

…
Family March

 Father: Jim
 Mother: Cindy
 Son: Brandon
 Daughter: Brenda
… other Families

…
Mr. Jim March
Mrs. Cindy March
Mr. Brandon March
Mrs. Brenda March

… other Persons

Transforming this … … into this.

Introduction To Model-to-Model Transformation

© 2008 INRIA 19

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

Work with the
ATL

Perspective

Required
artefacts
(models,

metamodels &
transformation)

Introduction To Model-to-Model Transformation

© 2008 INRIA 20

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• In order to achieve the transformation, we need to
provide:
1. A "Families " source metamodel in Ecore (generated from

its KM3 version).
2. A source model (in XMI) conforming to "Families".
3. A "Persons " target metamodel in Ecore (generated from its

KM3 version).
4. A "Families2Persons " transformation model in ATL.

• When the ATL transformation is executed, we
obtain:
• A target model (in XMI) conforming to "Persons".

Introduction To Model-to-Model Transformation

© 2008 INRIA 21

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The “Family” metamodel
• Source metamodel of the transformation

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Introduction To Model-to-Model Transformation

© 2008 INRIA 22

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The “Person” metamodel
• Target metamodel of the transformation

Person

fullName : String

Male Female

Introduction To Model-to-Model Transformation

© 2008 INRIA 23

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The “sample-Families” input and “sample-Persons” output
models
• The “sample-Families” model conforms to the “Families” metamodel
• The “sample-Persons” model conforms to the “Persons” metamodel
• The “sample-Persons” model is the result of the execution of the

transformation on the “sample-Families” model

Introduction To Model-to-Model Transformation

© 2008 INRIA 24

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• To create the ATL transformation, we use the ATL File
Wizard. This will generate automatically the header section.

IN:
Name of the source

model in the
transformation

Families:
Name of the source
metamodel in the
transformation

Persons:
Name of the target
metamodel in the
transformation

OUT:
Name of the target

model in the
transformation

Introduction To Model-to-Model Transformation

© 2008 INRIA 25

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The header section names the transformation module and
names the variables corresponding to the source and target
models ("IN" and "OUT") together with their metamodels
("Persons" and "Families") acting as types. The header section
of "Families2Persons" is:

module Families2Persons;
create OUT : Persons from IN : Families;

Introduction To Model-to-Model Transformation

© 2008 INRIA 26

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• A helper is an auxiliary function
that computes a result needed
in a rule.

• The following helper
"isFemale()" computes the
gender of the current member:

helper context Families!Member def: isFemale() : Boolean =
if not self.familyMother.oclIsUndefined() then

true
else

if not self.familyDaughter.oclIsUndefined() then
true

else
false

endif
endif;

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Introduction To Model-to-Model Transformation

© 2008 INRIA 27

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The family name is not directly
contained in class “Member”. The
following helper returns the family
name by navigating the relation
between “Family” and “Member”:

helper context Families!Member def: familyName : String =
if not self.familyFather.oclIsUndefined() then

self.familyFather.lastName
else

if not self.familyMother.oclIsUndefined() then
self.familyMother.lastName

else
if not self.familySon.oclIsUndefined() then

self.familySon.lastName
else

self.familyDaughter.lastName
endif

endif
endif;

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Introduction To Model-to-Model Transformation

© 2008 INRIA 28

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example
• After the helpers we now write the rules:
• Member to Male

• Member to Female

rule Member2Male {
from

s : Families!Member (not s.isFemale())
to

t : Persons!Male (
fullName <- s.firstName + ' ' + s.familyName

)
}

rule Member2Female {
from

s : Families!Member (s.isFemale())
to

t : Persons!Female (
fullName <- s.firstName + ' ' + s.familyName

)
}

Introduction To Model-to-Model Transformation

© 2008 INRIA 29

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• The created transformation

Introduction To Model-to-Model Transformation

© 2008 INRIA 30

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example
1. For each instance of the class

"Member" in the IN model,
create an instance in the OUT
model.

2. If the original "Member"
instance is a "mother" or one of
the "daughters" of a given
"Family", then we create an
instance of the "Female" class in
the OUT model.

3. If the original "Member"
instance is a "father" or one of
the "sons" of a given "Family",
then we create an instance of
the "Male" class in the OUT
model.

4. In both cases, the "fullname" of
the created instance is the
concatenation of the Member
"firstName" and of the Family
"lastName", separated by a
blank.

+ If isFemale()
 Female
Else
 Male

Person

fullName : String

Male Female

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Introduction To Model-to-Model Transformation

© 2008 INRIA 31

Writing a First Transformation with ATL

• “Families-to-Persons” Simple Example

• ATL launch configuration (transformation execution)

Introduction To Model-to-Model Transformation

© 2008 INRIA 32

References

• ATL Home page
• http://www.eclipse.org/m2m/atl/

• ATL Documentation page
• http://www.eclipse.org/m2m/atl/doc/

• ATL Newsgroup (use [ATL] tag)
• news://news.eclipse.org/eclipse.modeling.m2m

• ATL Wiki
• http://wiki.eclipse.org/index.php/ATL

http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/doc/
news://news.eclipse.org/eclipse.modeling.m2m
http://wiki.eclipse.org/index.php/ATL
news://news.eclipse.org/eclipse.modeling.m2m

