Introduction To Model-to-Model Transformation

Introduction To
Model-to-Model Transformation

Hugo Bruneliere & Frédéric Jouault

INRTA

B INRIA 1 © 2008 INRIA

Introduction To Model-to-Model Transformation

Context of this work
Infosmation Scciety ;

® The present courseware has been elaborated in the context of the
MODELPLEX European IST FPé project ().

® Co-funded by the European Commission, the MODELPLEX project
involves 21 partners from 8 different countries.

® MODELPLEX aims at defining and developing a coherent
infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems within a
variety of industrial domains.

® To achieve the goal of large-scale adoption of MDE, MODELPLEX
promotes the idea of a collaborative development of courseware

dedicated to this domain.

® The MDE courseware provided here with the status of open-source
software is produced under the EPL 1.0 license.

B INRIA 2 © 2008 INRIA

http://www.modelplex.org/

Introduction To Model-to-Model Transformation

Outline
® The Eclipse-M2M ATL Component

® Overall presentation
® How to get the ATL plugins

® M2M Transformation Principles
® Main concepts & schema of principles

e M2M with ATL
® Mapping of the M2M principles within the context of ATL
® Overview of the language

® Writing a First Transformation with ATL
® ATL Perspective
e ATL module
® Simple matched rules
e Helpers
® Running the transformation (launch configuration)

B INRIA 3 © 2008 INRIA

Introduction To Model-to-Model Transformation

The Eclipse-M2M ATL Component
® ATL: a key part of the Eclipse-M2M project (Modeling)

| | | | | |
HOME ' COMMUNITY ' MEMBERSHIP ' COMMITTERS ' DOWNLOADS ' RESOURCES ' PROJECTS ' ABOUT US SEARCH:_[_

» .
eclipse

Modeling

+ oo 2.0
o M2M M2M News
+ ATL web site moved
Components Welcome from GMT to M2M
Infrastructure M _ . : . f\gin:;ic? l?ilezdogla
odel-to-model transformation is a key aspect of model-driven development (MDD). The M2M project gnizec
ATL will deliver a framework for modelto-model transformation languages. The core part is the standard solution for
transformation infrastructure. Transformations are executed by transformation engines that are mogeltramfonnatuonm
Procedural QWT plugged into the infrastructure. There are three transformation engines that are developed in the Eclipse
scope of this project. Each of the three represents a different category, which validates the &Dzize.mffm'mm
Declarative QYT functionality of the infrastructure from multiple contexts. M2M is a subproject of the top-level Eclipse : 1sane

Modeling Project. posted 15-01-2007

The three are:

Incubation
- ATL
-+ Procedural QYT {Operational) Some components are
-» Declarative QVT (Core and Relational) currently in their Validation

(Incubation) Phase.

queicins R iz components
Documentation, Wiki Q

--- ., Infrastructure
- users newsgroup: users discussions and support [archive] | | T oo
[search] [web interface]

ATL: Use Cases, ATL Transformations,
Documentation, Download

s Procedural QVT

Home | PrivacyPolicy | TermsofUse | Contact | Legal | A A >opyright © 2007 The Eclipse Foundation. All Rights

Wl NRITA 4 © 2008 INRIA

® ATL homepage:

Introduction To Model-to-Model Transformation

The Eclipse-M2M ATL Component

]

1 1 I
HOME ' COMMUNITY ' MEMBERSHIP ' COMMITTERS

» .
eclipse

M2
ATL

Welcome + Use Cases
Use Cases + Basic Examples &
) ATL (ATLAS Transformation Language) is a model transformation language and toolkit developed by the ATLAS Group (INRIA & LINA). In the field of Patterns
Basic Examples Model-Driven Engineering (MDE), ATL provides ways to produce a set of target models from a set of source models. + Documentation
)) + Download
ATL Transformations Developed on top of the Eclipse platform, the ATL Integrated Environnement (IDE) provides a number of standard development tools (syntax highlighting, « Wiki

Download

Documentation

ki Rate and Comment via EPIC I 10 'I Submit I + Opened Bugs

debugger, etc.) that aims to ease development of ATL transformations. The ATL project includes also a library of ATL transformations.

ATL discussion occurs on the: M2M Eclipse newsgroup.

0 | I |
DOWNLOADS | RESOURCES | PROJECTS | ABOUTUS SEARCH: mnl [T1

ATLC

Getting Started

ATL Developer Box

Publications

Quick Navigator
Newsgroup

Transformations

-y

Use Cases, Basic Examples & Patterns, ATL r posted 05-10-2007

~» USers newsgroup: users discussions and support [archive] ATL comparison transformation posted 05-09-2007
[old archive] [search] [web interface] ettt

What can you do with ATL?

This section provides a set of ATL model transformation use cases covering different domains of application. These use cases are concrete examples
of how model to model transformation (M2M) can be applied.

+ Bugs recently closed
+ Report a bug
ATL News

« CVS

e ATLO ==

|
{ I

Home | PrivacyPolicy | TermsofUse | Contact | Legal | A A

B iINRIA

5 © 2008 INRIA

http://www.eclipse.org/m2m/atl/

Introduction To Model-to-Model Transformation

The Eclipse-M2M ATL Component

® Available resources:

® Use cases > complete transformation scenarios covering many
different domains of application

® Basic examples »> very first transformation examples which
are interesting when starting with ATL (for beginners)

® ATL Transformations > ATL Transformation Zoo which

gathers a hundred of various and varied transformations
implemented using ATL

® Download > different binary builds of ATL available and also
additional information for using the ATL update site

B INRIA 6

© 2008 INRIA

Introduction To Model-to-Model Transformation

The Eclipse-M2M ATL Component

® Available resources:

® Documentation > various kinds of ATL documents including a
reference manual, a user manual, installation instructions, etc

® Publications > non-exhaustive list of papers presenting
different works involving or using (directly or indirectly) ATL

e Wiki - an open section dedicated to ATL on the Eclipse Wiki
which allows the community to consult or/and add information
about ATL

® Newsgroup > alink fo the Eclipse newsgroup dedicated to
the M2M project components (posts concerning ATL are
prefixed with the [ATL] tag)

B INRIA 7 © 2008 INRIA

Introduction To Model-to-Model Transformation

The Eclipse-M2M ATL Component
® How to get the plugins:

® Download the latest binary builds (frequently updated):

® Use the M2M update site (M2M ATL SDK):

® Install ATL sources from CVS (stable HEAD):

® Install ATL sources from CVS (development branch):

B INRIA 8 © 2008 INRIA

http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/downloads/?project=atl
http://www.eclipse.org/modeling/m2m/updates/
http://www.eclipse.org/modeling/m2m/updates/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_From_CVS/
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS
http://wiki.eclipse.org/ATL/How_Install_ATL_(Dev)_From_CVS

Introduction To Model-to-Model Transformation

M2M Transformation Principles

® A M2M transformation is the automated creation of m

target models from n source models
e Each model conforms to a given reference model (which can be the
same for several models)

® M2M transformation is not only about M1 to M1

transformations:
® M1 to M2: promotion, M3 Metametamodel
® M2 to M1: demotion,
® M2 to M2 or M3 to M3

® M3 to M1, M3 to M2, etc.

M2 Metamodel

M1 Terminal Model

B INRIA 9 © 2008 INRIA

conformsTo

Introduction To Model-to-Model Transformation

M2M Transformation Principles

conformsTo @mmodel

conformsTo

Bl

Metamodel a
Class @

Transformation
Metamodel

A

conformsTo

T conformsTo

Transformation
Model

(e (Rule)

Metamodel b

conformsTo

Ma @

Mb -9
@

e o

B INRIA

e

© 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Application of the principles within the context of ATL

dCEha

c2

MMa is the c2 c2 MMB is the
source target

metamodell M Ma ATL M MDb |metamodel

c2 c2 2
MMa2MMb . aftl
Mal ~ Mb
Ma is the source model Mb is the target model

B INRIA 1 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (1/6)

® Source models and target models are distinct:
® Source models are read-only (they can only be navigated, not
modified),
® Target models are write-only (they cannot be navigated).

® The language is a declarative-imperative hybrid:

® Declarative part:

® Matched rules with automatic traceability support,
® Side-effect free navigation (and query) language: OCL 2.0

® Imperative part:
® Called rules,
® Action blocks.

® Recommended programming style: declarative

B INRIA 12 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (2/6)

® A declarative rule specifies:
® a source pattern to be matched in the source models,
® a target pattern to be created in the target models for each
match during rule application.

® An imperative rule is basically a procedure:
® It is called by its name,
® It may take arguments,

® It can contain:

® A declarative target pattern,
® Anaction block (i.e. a sequence of statements),
® Both.

W’ NRITA 13 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (3/6)

® Applying a declarative rule means:
® Creating the specified target elements,
® Tnitializing the properties of the newly created elements.

® There are three types of declarative rules:

® Standard rules that are applied once for each match,
® A given set of elements may only be matched by one standard rule,

® Lazy rules that are applied as many times for each match as
it is referred to from other rules (possibly never for some
matches),

® Unique lazy rules that are applied at most once for each
match and only if it is referred to from other rules.

B INRIA 14 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (4/6)

® Declarative rules: source pattern

® The source pattern is composed of:
® A labeled set of types coming from the source
metamodels
® A guard (Boolean expression) used to filter matches

® A match corresponds to a set of elements coming from the
source models that:
® Are of the types specified in the source pattern (one
element for each type)
® Satisfy the guard

W’ NRITA 15 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (5/6)

® Declarative rules: target pattern

® The target pattern is composed of:
® A labeled set of types coming from the target
metamodels
® For each element of this set, a set of bindings
® A binding specifies the initialization of a property of a
target element using an expression
e For each match, the target pattern is applied:
® Elements are created in the target models (one for each
type of the target pattern)
® Target elements are initialized by executing the bindings:
® First evaluating their value
® Then assigning this value to the corresponding
property

W’ NRITA 16 © 2008 INRIA

Introduction To Model-to-Model Transformation

M2M with ATL
® Overview of the language (6/6)

e® Execution order of declarative rules

® Declarative ATL frees the developer from specifying execution
order:
® The order in which rules are matched and applied is not
specified (remark: the match of a lazy or unique lazy rules
must be referred to before the rule is applied)
® The order in which bindings are applied is not specified
® The execution of declarative rules can however be kept
deterministic:
® The execution of a rule cannot change source models
> It cannot change a match
® Target elements are not navigable
- The execution of a binding cannot change the value
of another

W’ NRITA 17 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

Transforming this into this.

Family March Mr. Jim March
Father: Jim Mrs. Cindy March
Mother: Cindy |:> Mr. Brandon March
Son: Brandon Mrs. Brenda March
Daughter: Brenda .. other Persons

.. other Families

B INRIA 18 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

Work with the
ATL
Perspective

Required

artefacts

(models,
metamodels &

CEER
. Property Value
transformation) S
Location 30:1-37:2
MName
Type MatchedRule

B iINRIA

3 Resource &3

S

EI project
#) Families.ecore

@ Families.km3

[Z] FamilieszPersons.asm
r Families2Persons. atl
|= FamilieszPersons.launch
@ Persons.ecore

File Edit Mavigate Search Project ATL Editor

 r9- - 0- Q-

5. Navigator | E3 =

ATL Compatibility Run Window Help
=

8 (FamiliesZPersons.atl =

~

module FamilieszPersons;
create OUT : Persons from IN : Families;

helper context Fanmili ber def: familyN.
if not self familyFather.oclIsUndefined() then

self .FamilyFather lastName
else
if not self .FamilyMather. ocllsUndefined{) then
self .FamilyMather.|lasthame
else

if not self.familySon.ocllsUndefined{) then
self.FamilySon.lastMName

2 String =

helper context Families!Member def: isFemale() : Boolean =

if not self .FamilyMother. ocllsUndefined() then
true

else
if not self .familyDaughter.ocllsUndefined() then
true
else
false
endif
endif;

ule MemberZMale {
from

s : Families!Member {not s.isFemale())

to
t : Persons!Male
fullName <- s.firstName + "' + s.FamilyName

[21 Problems | = Properties 52 Q] Error Log | & Console

|

. E] Ej, <default> : OutPattern : QutPattern

else R

y = .

[! Persons.km? A self FamilyDaughter lasthame = R MiamberZFemale : MatchedRule

@ sample-Families. xmi endif [#--3| <default> : InPattern : InPattern

& sample-Persons.xmi endif ®-[E «default> : OutPattern : OutPattern
endif;

5@ at |8 sava
=0
ceNwET
=[50 Families2Persons : Module
@) ouT : OclModel
@E IN @ OclModel
=] I;Ij FamilyMame : Helper
@ F isFemale : Helper
= :’_R Member2Male : MatchedRule

-3 «default> : InPattern : InPattern

5% outline &2

W

19

© 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® In order to achieve the transformation, we need to

provide:

1. A "Families " source metamodel in Ecore (generated from
its KM3 version).

2. A source model (in XMI) conforming to "Families".

3. A "Persons " target metamodel in Ecore (generated from its
KM3 version).

4. A "Families2Persons " transformation model in ATL.

® When the ATL transformation is executed, we
obtain:
® A target model (in XMI) conforming to "Persons".

B INRIA 20 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® The "Family” metamodel
® Source metamodel of the transformation

ofamilyFather father
Family 0.1 1 Member
ofamilyMother mother
0.1 1
lastName : String gfilmll\/SOn sons* firstName « String
01 x # | Families.ecore 23

S platform: fresource/Families2Persons/Families.ecore
= # Families
=& Family
4 lastMame : String
5* father : Member
5* mother : Member

&2 sons : Member

&2 daughters : Member
Member
2 Ffirsthame : String
= fFamilyFather : Family
= FamilyMother : Family
= FamilySon : Family

4 = familyDaughter : Family
+- # PrimitiveTypes

W’ NRITA 21 © 2008 INRIA

1
B R e o R R A e 3

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® The "Person” metamodel
® Target metamodel of the transformation

Person

| Persons.ecore o4

fullName : String = &)
- # Persons
= Person
A +- 5 fullMame : String
E Male -> Person

E Female -= Person
+- # PrimitiveTypes

Male Female

B INRIA 22 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® The "sample-Families” input and "sample-Persons” output

models

® The "sample-Families" model conforms to the "Families” metamodel

® The "sample-Persons” model conforms to the "Persons” metamodel

® The "sample-Persons” model is the result of the execution of the
transformation on the "sample-Families” model

4! sample-Families.xmi 2 -
SR 0|5t Form: fresourceFamilies2Persons sample-Families. xmi 4! sample-Persons.xmi 23

=< Family March = ‘Q‘ platform: fresource/FamiliesZPersonsjsample-Persons. xmi
< Member Jim <4 Male Peter Sailor
<4 Member Cindy < Male Jim March
< Member Brandon < Male Brandon March
<4 Member Brenda <4 Male Dylan Sailor

=<4 Family Sailor <4 Male David Sailor
<4 Member Peter < Female Brenda March
<4 Member Jackie < Female Kelly Sailor
< Member David < Female Jackie Sailor
<4 Member Dylan < Female Cindy March
4 Member Kelly

B INRIA 23 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® To create the ATL transformation, we use the ATL File
Wizard. This will generate automatically the header section.

e
ATL File Wizard

IN:
Name of the source
model in the
transformation

—

HEAD

Container

I \FamilieszPersons

Browse. .. I

ATL Module Name | FamilieszPersons

ATL File Type

Imodule

[~

IN

Model [IN

Metamode! | Families

| ! etamou. !

ADD

OUT:
Name of the target
model in the
transformation

Name of the source
metamodel in the
transformation

B INRIA

Persons:
Name of the target
metamodel in the
transformation

o
I) Families
Model | oUT Metamodel | Persons
0 | arn
ouT) (Persons
NS
o=
us | 4DD |
LB |
2 Finish Cancel
24

© 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL
® "Families-to-Persons” Simple Example

® The header section names the transformation module and
names the variables corresponding to the source and target
models ("IN" and "OUT") together with their metamodels
("Persons" and "Families") acting as types. The header section
of "Families2Persons" is:

module Families2?2Persons;
create OUT : Persons from IN : Families;

B INRIA 25 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

® A helper is an auxiliary function e =
Family [% 'l Member
that computes a result needed R nother
in<1[1ﬂ§. 0.1 1
. lastName : String I‘cmilySon o firstName : String
e The following helper 0.1 i
II'SFemale()ll Compu.l_es The I‘amilybaugh'rer daugh‘rers*
gqender of the current member: -
helper context Families!Member def: isFemale() : Boolean =
if not self.familyMother.oclIsUndefined() then
true
else
if not self.familyDaughter.oclIsUndefined() then
true
else
false
endif
endif;

B INRIA 26 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

father

. . . amilyFather
® The family name is not directly .

: : " " Family % 'l Member
CO”TGlned ln CIGSS Member‘ . The I‘amilyMoTher‘ mother
following helper returns the family 01 !

N N N lastName : String l‘amilySon e firstName : String
name by navigating the relation > .
be,‘,ween " Fam”yll and “Member‘": I‘amilybaugh‘rer daughters
U.1l
helper context Families!Member def: familyName String =
if not self.familyFather.oclIsUndefined () then
self.familyFather.lastName
else
if not self.familyMother.oclIsUndefined () then
self.familyMother.lastName
else
if not self.familySon.oclIsUndefined () then
self.familySon.lastName
else
self.familyDaughter.lastName
endif
endif
endif;

B INRIA 27

© 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example
® After the helpers we now write the rules:

__©® Member to Male

rule Member2Male {
from
s : Families!Member (not s.isFemale())
to
t : Persons!Male (

)

fullName <- s.firstName + ' ' + s.familyName

® Member to Female

rule Member2Female {

)

from
s : Families!Member (s.isFemale())
to
t : Persons!Female (
fullName <- s.firstName + ' ' + s.familyName

B INRIA 28

© 2008 INRIA

Introduction To Model-to-Model Transformation
Writing a First Transformation with ATL
® "Families-to-Persons” Simple Example

® The created transformation

€ FamiieszPersons.atl i

module Families2Persons;
create OUT ; Persons from IN ; Families;

helper context Families!Member def: FamilyMame : String =

if not self.FamilyFather.ocllsUndefined() then
self . FamilyFather lastMame

else
if not self.FamilyMother.oclIsUndefined() then

self . FamilyMother lastMame
else
if not self.FamilySon. ocllsUndefined() then
self.FamilySon.lasthame
else
self .FamilyDaughter lastName
endif
endif
endif;

helper context Families!Member def: isFemale() : Boolean

if not self.FamilyMother. ocllsUndefined() then
true

else
if not self.FamilyDaughter.ocllsUndefined() then

true
else
false
endif
endif;

rule Member2Male {
from

M EGE R not s.isFemale())

t : Persons!Male (
fullame <- s.firstName + "' + s.FamilyName

)

to

B INRIA

= O 5% outline &2 ceN&KlaY=0

= [-r Families2Persons : Module

@2 out : OciModel
lf}E] IN : OclModel
® Q[S FamilyMame : Helper
@ L[S isFemale : Helper
= §r Member2Male : MatchedRule
=1-~F <default> : InPattern : InPattern
#-|= s: SimpleInPatternElement
[+ Z‘;V <default > : OperatorCallExp : OperatorCallExp
<default> : OutPattern : OutPattern
#-|= t: SimpleOutPatternElement
= §r MemberzFemale : MatchedRule
=-~F <default> : InPattern : InPattern
#-|= s: SimpleInPatternElement
[+ ff-}' <default > : OperationCallExp : OperationCallExp
=[5 <default> : OutPattern : OutPattern
#-|= t: SimpleOutPatternElement

29 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL

® "Families-to-Persons” Simple Example

1. For each instance of the class
"Member" in the IN model,
create an instance in the OUT
model.

2. If the original "Member"
instance is a "mother" or one of
the "daughters" of a given

Y "Family", then we create an

Family ~ Jo.1

lastName : String

firstName : String

A y : " " :
—+ If isFemale() :;\S:g]f;' or:o‘rc:*\eel Female" class in
l .
Els:ema € 3. If the original "Member"
Mal instance is a "father" or one of
the "sons" of a given "Family",

then we create an instance of

Pergon the "Male" class in the OUT
model.
4, In both cases, the "fullname" of
AP the created instance is the
concatenation of the Member

"firstName" and of the Family
Male Female "lastName", separated by a
blank.

B INRIA 30 © 2008 INRIA

Introduction To Model-to-Model Transformation

Writing a First Transformation with ATL
® "Families-to-Persons” Simple Example

® ATL launch configuration (transformation execution

& Run Configurations

Create, manage, and run configurations -

TREX | B 3

MName: [Families2Persons]

[type filker text

€ ATL Configuration @ Advanced | £ Common
& r ATL Transformation

Project:
r Families2Persons

ATL Transformation (OLD) Name: ‘FamilieSZPersons b
& Eclipse Application

ATL file: | [Families2Persons/Families2Persons. atl v
5] Java applet .
{37 Java Application Metamodels
T JET Transformation Families: | {Families2Persons/Families.ecore
Ju Junit = :
.T{f Jnit Plug-in Test []1s metametamode! Model handler: |EMF [Workspace...] [File system...] [EMF Reqgistry. ..]

f & Operational QYT Interpreter

Persons: | [Families2Persons/Persons.ecore
4 05Gi Framework

Juy Task Context Test [[]1s metametamodel Model handler: :EMF v: [Workspace...] [File system...] [EMF Reqistry...]
Source Models Target Models Libraries
In: IFamilies2Persons)sample-Families. xmi ‘ OUT: IFamilies2Personsjsample-Persons.xmi ‘
: Families [Workspace...] [File system...] : Persons [Workspace...] [File system...]
Madify

[Add source model...] [Add target model. ..] [Add library... l

Filter matched 12 of 12 items

PN
©) ([Run])[Close]
N 7

B INRIA 3t © 2008 INRTA

Introduction To Model-to-Model Transformation

References

® ATL Home page

® ATL Documentation page
o

® ATL Newsgroup (use [ATL] tag)

® ATL Wiki

B INRIA 32 © 2008 INRIA

http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/doc/
news://news.eclipse.org/eclipse.modeling.m2m
http://wiki.eclipse.org/index.php/ATL
news://news.eclipse.org/eclipse.modeling.m2m

