
Emergency Information
Dissemination and Exercise Systems

Austin Riddle, Cole Markham
Jim Wall, Ph.D., Keith Biggers, Paul Bilnoski

Outline

• Background
• Eclipse Technologies
• Projects and Customers

– Leveraging existing investments/reuse
– Component based application development

• Contributions to the community
• Current challenges
• Lessons Learned
• Demo
• Questions?

A Tale of Two Realities

• Concrete Goals

– Provide collaborative tools for information authoring and dissemination

– Support the production of a Common Operating Picture (COP)

Modified Lawson’s Command and Control Model

 The well-known command and control

model developed by Joel Lawson

provides a valuable framework for the

construction of a training environment

for supporting the decision-making

process for emergency managers.

 A modified version of Lawson’s

command and control model shows

how real world and simulated feeds

can be separately managed to allow

the training environment to be

extended to support an operational

environment.

EnvironmentOR

Real
World
Events

Scenario

C
o

m
m

an
d

 C
en

te
rExternal Data

Desired State

Decision Aids

Sense

Process

Compare

Decide

Act

Eclipse to the Rescue
• Rich Client Platform (RCP) - enables us to produce

pluggable Java-based desktop applications that can
compete with natively written ones

• Graphical Editing Framework (GEF) – enables us to
produce novel interfaces for dealing with collaborative
authoring and information visualization

• Rich Ajax Platform (RAP) – allows us to produce rich
internet applications without writing much script and
leverage existing investments in RCP

• Eclipse Communication Framework (ECF) – gives us
effective facilities that enable robust, fault-tolerant
network communications for supporting distributed
systems

• Equinox – allows us to create a federation of pluggable
components into our frameworks

Yes, a shameless decapitation of mighty mouse, we know, the tail gives it away.

Practice, Practice, Practice

Creating “virtual veterans” of large scale disasters, both natural and human initiated.

 Scenario-driven simulation-supported exercise environment that offers great flexibility with respect to the

target training audience and types of incidents introduced in the scenario.

 Can be used operationally as a command and control system – blurs the line between training and

operations. Focus is on decision making.

 Provides common operating picture for emergency management personnel thereby facilitating a higher

state of situational awareness for all participants.

Customer – United States Air

Force

Focus is on the Emergency

Operations Center

Training for all AETC bases

Full Spectrum Threat Response

Simulation (FSTR-SIM)

Customer – Department of

Homeland Security

Focus is on the Incident

Command Post

More than 5500 responders

trained

Emergency Management Exercise System

Customer – Governor’s Division of

Emergency Management, State of Texas

Focus is on the Multi-Agency

Coordination Center (MACC)

Supporting training of all 26 MACCs in

State of Texas

Common Characteristics

FSTR-SIM – Full Spectrum Threat Response Simulation

• Fully operational client-server desktop
application

• Capabilities:
– Resource management
– Geospatial information management
– Temporal information management
– Collaborative scenario authoring
– Common Operating Picture

• Eclipse Technologies
– RCP (3.0 – 3.1.2)
– GEF
– ECF Shared Objects
– uDig (User-friendly Desktop Internet

GIS)

EM*ES – Emergency Management Exercise System

• Fully operational distributed
desktop application

• Capabilities:
– Resource management
– Geospatial information

management
– Temporal information

management
– Collaborative scenario authoring
– Common Operating Picture
– Exercise recording and playback

• Eclipse Technologies
– RCP (3.2 – 3.3)
– GEF
– Lucene Plugins
– BIRT

Moving Forward

• The transition from FSTR-SIM to EM*ES was fueled by
greater understanding of the Eclipse framework and
ecosystem.

• Pluggable components were made more abstract and less
tightly coupled.

• Focus has now shifted to the development of a powerful
framework that supports a desktop and web version based
on existing capabilities.

• Constraints:
– Could not abandon initial investments in Eclipse technologies
– Support 3rd party pluggable components
– Reuse between web and desktop applications

Enter the Dashboard
• Information Dashboard Framework:

– Component based federation framework
– Allows scoped information sharing between

dashboard users, installations and echelons

• As the development of IDF continues, 3 projects
have aided in the identification of framework
requirements

Decision Support Tools
• Manual – visual integration of data
• Assisted – visualization development

using visual programming
• Automated – monitoring agents

Levels of Integration
• Visual
• Middleware (converging data streams)
• Application to Application Data Sharing
• Hybrid (any combination of the above)

Pushing the Limits

Customer - Foreign Animal and

Zoonotic Disease Center

Focus is on the management of

animal disease spread

Dynamic Preparedness

System

Customer – Department of

Homeland Security

Focus is on global

biosurveillance and information

dissemination

Operational, and more than

20,000 users are planned

Biosurveillance Common

Operating Picture

Customer – United States Coast

Guard

Focus is on emergency

preparedness and training

Supported on-the-water exercise

in Seattle, WA.

Coast Guard Display System

 Visual integration—side-by-side display and overlay of information allows inferences to be made.

 Information sharing—ability to selectively share information with other users.

 Common operating picture—all users can see a customizable view of common and shared data.

 Decision support—dashboard facilities support collaborative decision making.

Common Characteristics

DPS – Dynamic Preparedness System
• Prototype/Demo

Application
• Based on EM*ES
• Capabilities:

– Visual Integration of
Information

– Common Operating Picture
– Scripted via timeline

• Eclipse Technologies
– RCP
– GEF
– Equinox HTTP Registry
– Jetty

BCOP – Biosurveillance Common Operating Picture
• Fully operational Rich Internet Application
• Capabilities:

– Visual Integration of Information
– URL-based components with automatic

thumbnail generation
– Hard coded widget-based components
– Report uploading/data entry
– Report->Event association
– Robust filtering of reports
– Event-based component contents/title
– Map/Timeline integration
– Common Operating Picture

• Eclipse Technologies
– RAP (1.1 – 1.2)
– Server-side Equinox

• Leveraged existing Eclipse knowledge and
some backend bundles from previous
projects

• RAP allowed for rapid application
development/prototyping which allowed
functional milestones to be achieved

CGDS – Coast Guard Display System

• Fully operational Rich Internet
Application

• Capabilities:
– Visual Integration of Information
– Quick user customization of layout
– Profile switching
– Component switching
– Contributions to map and timeline
– Selective information sharing
– Map drawing and marker

placement
– Common Operating Picture
– Scenario recording and playback

• Eclipse Technologies
– RAP (1.2 – 1.3, CVS Head)
– Equinox HTTP Registry

• Included more RCP investments
from previous projects including
single-sourced UI components

Single Sourcing Issues

• User-specific Workbenches/Displays

• Getting a display outside the UI thread, no more:
– PlatformUI.getWorkbench().getDisplay()

– Display.getDefault()

• Model listeners need a display reference to call
asyncExec()

• Timely asynchronous updates from the server require
polling from the client-side, this is not built-in
– A UICallback is not suited for session long usage

• SWT Resources (e.g., Color, Image, Font) are
handled differently, use JFace and Theme support

Current Challenges

• RCP Desktop Systems
• Single sourcing after the fact

• RAP Dashboard Systems
• Memory footprint issues on

client and server

• Scalability (20,000 users?)

• Client software, IE 6.0!

• Servlet container/web server

• Lazy content providers to avoid
script timeouts, breaks sorting

• Reconnect to same session

Contributions to the Community

• Primary contributions to RAP

• Bug reports

• Widget improvements

• Patches

• Rigorous government security evaluation

Lessons Learned

• Look before you leap!

– There is probably an Eclipse project that can help
you do what you need.

– Try to understand the paradigm, not just the API.

• Be in collaboration with Eclipse project teams
via Newsgroups and Bugzilla.

– You would be surprised at how helpful they can
be.

Demo

• EM*ES

• CGDS

