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 Marc Khouzam

 Software Developer at Ericsson since 1998

 CDT project co-lead, focusing on Debugging

 Working with CDT since 2009

 Marc-André Laperle

 Software Developer at Ericsson since 2013

 Committer for Trace Compass, CDT and Linux Tools

 Contributor to other projects (Platform UI, SWT, EGit, Mylyn, PDE)

ABOUT US



3

AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

– An integration in 4 parts

 Conclusion



A little background:

Advanced Debugging
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Non-Stop Debugging

› Program continues execution while suspending some threads

› Reduced intrusiveness
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DYNAMIC PRINTF
INSERTED AT RUNTIME

WITH GDB

DYNAMIC-PRINTF

COMPILED
PRINTF

DEBUGGER

› Sometimes traces are necessary

› Printf without recompiling or redeploying!
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OS Awareness

Sockets

Shared Memory 
Segments

Process Groups

All Processes

All Threads

File Descriptors

Loaded Kernel 
Modules

Semaphores

Message 
Queues

› Access to system information while debugging



More background:

Tracing with 

Trace Compass
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TRACE COMPASS



10

Common Features

› Data-driven state system and views
– XML description of state changes to convert trace events to states
– XML description of view representation of the computed state system
– Can be created without changing source code or recompiling

› For example: 50 lines of XML created the view below
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Control flow view

› Displays processes state changes (color-coded) over time
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Resources view

› Displays system resource states (color-coded) over time
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CPU USAGE View
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 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

1. Enhanced Post-mortem troubleshooting

2. Debugging with Trace snapshots

3. Tracing with the (Multicore) Visualizer

4. GDB Traces with Trace Compass

 Conclusion



Enhanced Post-Mortem 

Troubleshooting
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Post-Mortem Debug

› Use GDB to examine core file
› Variables, Registers, Memory
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Post-Mortem Trace

› Standard visualization of traces taken upon a crash
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Core + Traces

› Joint Debug/Tracing visualization for most flexibility
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System setup

1. Enable Tracing e.g., LTTng, UST, etc

2. Register crash handler with Linux kernel (man core)

3. Crash Handler collects/stores traces as well as core file
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Debug LauncH

 1) Use Post-Mortem launch 2) Specify location of Traces
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Core + Traces
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Debugging with 

Trace Snapshots
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Debugging with 
Trace Snapshots

› Acquire snapshot and open on suspended debugger

Suspended

CDT 
Debug

Trace 
Compass

LTTng

Take snapshot

Snapshot acquired

Open snapshot!
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Debugging with 
Trace Snapshots

› Advantages:
– Very low overhead
– Minimal disk usage

› Disadvantage:
– Limited data available (as big as buffer allows)
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The Prototype

1) Create a tracing session 2) Select session in Debug configuration 

3) Suspend (or hit a breakpoint)
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The Prototype
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Future improvements

› Configure session from
Debug configuration

• Choose tracer
• Choose trace points
• Tracer specific options
• Persisted
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Future improvements

› Callstacks of the last few seconds

Current stack frames (GDB)

+

Previous events with function entry 
and exit (LTTng snaphot)
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Future improvements

Result (example)

Callstack can be visualized moments before suspend!
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Trace (Multicore) 

Visualizer
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multicore visualizer
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Trace Visualizer

› Show all threads except sleeping
 All of them could run

› Coloured by kernel state

› CPU Usage

› We can have a better grasp 
of level of overload

› Which processes are 
affected by the overload? 
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TRACE Visualizer

› Colouring by process

› Sorting as improvement
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TRACE COMPASS and 
Trace Visualizer
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TRACE Visualizer

› Another example

› Notice partial CPU usage 
even with overload

› Could it be the Kernel using 
CPU?

› Could indicate even stronger 
overload



38

› Coloured by kernel state (RUNNING & SYSCALL)
›

Visualizer with Xeon Phi
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› Coloured by process

Visualizer with Xeon Phi
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› Filtering of cores to display

Visualizer with Xeon Phi
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GDB Traces with 

Trace Compass
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GDB TRACEpoints

› Instrumentation, collection and visualization in CDT
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Debug GDB Traces

Collected Data

Line where trace
was collected

Tracepoint that
was hit
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GDB TRACEs event table

› Synchronized Trace Compass's Events Table



Conclusion
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MULTICORE DEBUG GROUP 
› Joint effort to bring multicore debugging to the CDT

– Visualizer, Pin&Clone, Multiprocess, etc

› Support for those that want to add new features

› Monthly conference calls (open to all interested and free )

– http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup
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More on Tracing

› Learn more about tracing and Trace Compass:

› Thursday 12 noon in Harbour AB with Marc-Andre:

 “Analyzing Eclipse Applications with Trace Compass”



Some References

› Integration on GitHub, 
https://github.com/MarkZ3/Trace-Compass/tree/dsf-mv-integration

› CDT Project, http://www.eclipse.org/cdt
› Trace Compass, 

https://projects.eclipse.org/projects/tools.tracecompass

› CDT FAQ, http://wiki.eclipse.org/CDT/User/FAQ
› CDT Debug workgroup 

http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup 
› CDT Wiki, http://wiki.eclipse.org/CDT

https://github.com/MarkZ3/Trace-Compass/tree/dsf-mv-integration
http://www.eclipse.org/cdt
https://projects.eclipse.org/projects/tools.tracecompass
http://wiki.eclipse.org/CDT/User/FAQ
http://wiki.eclipse.org/CDT
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Feedback
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Final Q&A



BONUS SLIDES



Other CDT Debug News
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Debug View Labels

› GDB binary name/version

› Thread Names
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Per-Element Format

› Ability to set format per element

› Variables, Expressions, Registers views
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Register Groups

› Ability to create groups of registers
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Pin&Clone for Visualizer

› Ability to pin a Multicore Visualizer to a session

› Allows to monitor multiple systems concurrently
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Mini core dumps

› Effort of the Linux Diamon workgroup (diamon.org)

› Mini core dumps:
– Configurable excerpt of full core dump
– Space savings (good for embedded)
– Storage of multiple mini core dumps

› Coming to a Linux distribution in the near future!
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Future Plans
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Global Breakpoints

Applies to every process

Auto attach when hit

Un-started or short lived process

› Contribution to Linux Kernel ongoing
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Integrated GDB Console

prompt

Eclipse’s
GDB-console

Event 
reporting

Command 
history

Command 
completion

Synchronized 
with GUI

Integrated
Or

stand-alone

› Coming in 2015!
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PTC SETS

Process Thread Core (PTC) sets 
control groups of debug elements:

– Step threads numbered between 34 and 
59

– Step all threads running on core 2

– Stop everything running on cores 5 to 7, 
preventing new threads from being started
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