
The great troubleshooting encounter:

CDT meets Trace Compass
EclipseCon, March 2015

Marc Khouzam

Marc-André Laperle



2
2

 Marc Khouzam

 Software Developer at Ericsson since 1998

 CDT project co-lead, focusing on Debugging

 Working with CDT since 2009

 Marc-André Laperle

 Software Developer at Ericsson since 2013

 Committer for Trace Compass, CDT and Linux Tools

 Contributor to other projects (Platform UI, SWT, EGit, Mylyn, PDE)

ABOUT US



3

AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

– An integration in 4 parts

 Conclusion



A little background:

Advanced Debugging



5
5

Non-Stop Debugging

› Program continues execution while suspending some threads

› Reduced intrusiveness



6

DYNAMIC PRINTF
INSERTED AT RUNTIME

WITH GDB

DYNAMIC-PRINTF

COMPILED
PRINTF

DEBUGGER

› Sometimes traces are necessary

› Printf without recompiling or redeploying!



7

OS Awareness

Sockets

Shared Memory 
Segments

Process Groups

All Processes

All Threads

File Descriptors

Loaded Kernel 
Modules

Semaphores

Message 
Queues

› Access to system information while debugging



More background:

Tracing with 

Trace Compass



9

TRACE COMPASS



10

Common Features

› Data-driven state system and views
– XML description of state changes to convert trace events to states
– XML description of view representation of the computed state system
– Can be created without changing source code or recompiling

› For example: 50 lines of XML created the view below



11

Control flow view

› Displays processes state changes (color-coded) over time



12

Resources view

› Displays system resource states (color-coded) over time



13

CPU USAGE View



AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

1. Enhanced Post-mortem troubleshooting

2. Debugging with Trace snapshots

3. Tracing with the (Multicore) Visualizer

4. GDB Traces with Trace Compass

 Conclusion



Enhanced Post-Mortem 

Troubleshooting



16

Post-Mortem Debug

› Use GDB to examine core file
› Variables, Registers, Memory



17

Post-Mortem Trace

› Standard visualization of traces taken upon a crash



18

Core + Traces

› Joint Debug/Tracing visualization for most flexibility



19

System setup

1. Enable Tracing e.g., LTTng, UST, etc

2. Register crash handler with Linux kernel (man core)

3. Crash Handler collects/stores traces as well as core file



20

Debug LauncH

 1) Use Post-Mortem launch 2) Specify location of Traces



21

Core + Traces



AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

1. Enhanced Post-mortem troubleshooting

2. Debugging with Trace snapshots

3. Tracing with the (Multicore) Visualizer

4. GDB Traces with Trace Compass

 Conclusion



Debugging with 

Trace Snapshots



24

Debugging with 
Trace Snapshots

› Acquire snapshot and open on suspended debugger

Suspended

CDT 
Debug

Trace 
Compass

LTTng

Take snapshot

Snapshot acquired

Open snapshot!



25

Debugging with 
Trace Snapshots

› Advantages:
– Very low overhead
– Minimal disk usage

› Disadvantage:
– Limited data available (as big as buffer allows)



26

The Prototype

1) Create a tracing session 2) Select session in Debug configuration 

3) Suspend (or hit a breakpoint)



27

The Prototype



28

Future improvements

› Configure session from
Debug configuration

• Choose tracer
• Choose trace points
• Tracer specific options
• Persisted



29

Future improvements

› Callstacks of the last few seconds

Current stack frames (GDB)

+

Previous events with function entry 
and exit (LTTng snaphot)



30

Future improvements

Result (example)

Callstack can be visualized moments before suspend!



AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

1. Enhanced Post-mortem troubleshooting

2. Debugging with Trace snapshots

3. Tracing with the (Multicore) Visualizer

4. GDB Traces with Trace Compass

 Conclusion



Trace (Multicore) 

Visualizer



33

multicore visualizer



34

Trace Visualizer

› Show all threads except sleeping
 All of them could run

› Coloured by kernel state

› CPU Usage

› We can have a better grasp 
of level of overload

› Which processes are 
affected by the overload? 



35

TRACE Visualizer

› Colouring by process

› Sorting as improvement



36

TRACE COMPASS and 
Trace Visualizer



37

TRACE Visualizer

› Another example

› Notice partial CPU usage 
even with overload

› Could it be the Kernel using 
CPU?

› Could indicate even stronger 
overload



38

› Coloured by kernel state (RUNNING & SYSCALL)
›

Visualizer with Xeon Phi



39

› Coloured by process

Visualizer with Xeon Phi



40

› Filtering of cores to display

Visualizer with Xeon Phi



AGENDA

 A bit of background: Debug and Tracing

 CDT Debug and Trace Compass integration

1. Enhanced Post-mortem troubleshooting

2. Debugging with Trace snapshots

3. Tracing with the (Multicore) Visualizer

4. GDB Traces with Trace Compass

 Conclusion



GDB Traces with 

Trace Compass



43

GDB TRACEpoints

› Instrumentation, collection and visualization in CDT



44

Debug GDB Traces

Collected Data

Line where trace
was collected

Tracepoint that
was hit



45

GDB TRACEs event table

› Synchronized Trace Compass's Events Table



Conclusion



47

MULTICORE DEBUG GROUP 
› Joint effort to bring multicore debugging to the CDT

– Visualizer, Pin&Clone, Multiprocess, etc

› Support for those that want to add new features

› Monthly conference calls (open to all interested and free )

– http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup



48

More on Tracing

› Learn more about tracing and Trace Compass:

› Thursday 12 noon in Harbour AB with Marc-Andre:

 “Analyzing Eclipse Applications with Trace Compass”



Some References

› Integration on GitHub, 
https://github.com/MarkZ3/Trace-Compass/tree/dsf-mv-integration

› CDT Project, http://www.eclipse.org/cdt
› Trace Compass, 

https://projects.eclipse.org/projects/tools.tracecompass

› CDT FAQ, http://wiki.eclipse.org/CDT/User/FAQ
› CDT Debug workgroup 

http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup 
› CDT Wiki, http://wiki.eclipse.org/CDT

https://github.com/MarkZ3/Trace-Compass/tree/dsf-mv-integration
http://www.eclipse.org/cdt
https://projects.eclipse.org/projects/tools.tracecompass
http://wiki.eclipse.org/CDT/User/FAQ
http://wiki.eclipse.org/CDT


50
50

Feedback



51

Final Q&A



BONUS SLIDES



Other CDT Debug News



54

Debug View Labels

› GDB binary name/version

› Thread Names



55

Per-Element Format

› Ability to set format per element

› Variables, Expressions, Registers views



56

Register Groups

› Ability to create groups of registers



57

Pin&Clone for Visualizer

› Ability to pin a Multicore Visualizer to a session

› Allows to monitor multiple systems concurrently



58

Mini core dumps

› Effort of the Linux Diamon workgroup (diamon.org)

› Mini core dumps:
– Configurable excerpt of full core dump
– Space savings (good for embedded)
– Storage of multiple mini core dumps

› Coming to a Linux distribution in the near future!



59

Future Plans



60

Global Breakpoints

Applies to every process

Auto attach when hit

Un-started or short lived process

› Contribution to Linux Kernel ongoing



61

Integrated GDB Console

prompt

Eclipse’s
GDB-console

Event 
reporting

Command 
history

Command 
completion

Synchronized 
with GUI

Integrated
Or

stand-alone

› Coming in 2015!



62

PTC SETS

Process Thread Core (PTC) sets 
control groups of debug elements:

– Step threads numbered between 34 and 
59

– Step all threads running on core 2

– Stop everything running on cores 5 to 7, 
preventing new threads from being started


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

