
Bidirectional Incremental
Transformations with Active
Operation Framework -
Application to Facades

O. Beaudoux, F. Jouault, ESEO/TRAME

Context
•

○

•

•

2

Proposed Solution
•

•

•

•

3

Results
•

•

4

Definition: Transformation
● A transformation t creates a set of target models b

from a set of source models a.
b = t(a)

● If a later changes into a’ = c(a), it becomes
desynchronized with b. One can compute a new target
model b’.
b’ = t(a’) = t(c(a))

● If b’ later changes into b’’, it becomes desynchronized
from the source model.

5

Definition: Incremental Transformation
● An incremental transformation stays active after

creating the initial target models, and propagates source
model changes.

b = t(a)

↓② ↓①

 b’ = t(a’) = t(c(a))

● It works by applying c’ corresponding to c:
 c’(b) = t(c(a))

● If b’ later changes into b’’, it becomes desynchronized
from the source model. 6

Definition: Bidirectional Incremental
Transformation
● A bidirectional incremental transformation stays

active after creating the initial target models and
propagates both source and target model changes. e.g.:
b = t(a)

↓① ↓②

b’ = c’(b) = t(a’) = t(c(a))

● It works by applying c corresponding to c’:
c’(b) = t(c(a))

7

Active Operations & Models

● Active operations are bidirectional
incremental transformations on boxes (i.e.,
collections or wrapped singletons).

● A model is an object graph...
○ Edges are represented with object slots. This is how

EMF works.
● … with every slot defined as a box.

8

Available Operations

● Operations on boxes are well-known
functional operations notably found in OCL:
○ select, collect, size, isEmpty, notEmpty, union, etc.

● Plus a few specific operations:
○ collectTo, collectedFrom, bind, switchCollect

● Most operations are at least incremental and
are bidirectional if provided with enough
information.

9

Example: Derived Features (1 Of 2)
-- Specification: all resources must be used by transports.
-- Directly actionable using active operations.
context Transporter inv:

self.resources = self.transports.driver->union(
self.transports.truck)

-- Classical approach:
-- implementation of /resources derived feature.
context Transporter::resources : OrderedSet (Resource) derive:

self.transports.driver->union(self.transports.truck)

10

Example: Derived Features (2 Of 2)
-- Specification: resources are the union of drivers and
-- trucks. Directly actionable using active operations.
context Transporter inv:

self.resources = self.drivers->union(self.trucks)

-- Classical approach:
-- 1) implementation of /drivers derived feature
context Transporter::drivers : OrderedSet(Driver) derive:

self.resources->select(e | e.oclIsKindOf(Driver))

-- 2) implementation of /trucks derived feature
context Transporter::trucks : OrderedSet(Truck) derive:

self.resources->select(e | e.oclIsKindOf(Truck)) 11

Box Types

12

Box Type Name Multiplicity Unique Ordered

No direct OCL
equivalent

Option 0..1 N/A (true by
convention)One 1..1

Same type name as
in OCL

Set

0..*

true false

Bag false false

OrderedSet true true

Sequence false true

collect: unidirectional version
OCL example:

def: multBy2(set : Set(Integer)) : Set(Integer) =
set->collect(e | 2*e)

AOF equivalent:

IBox<Integer> multBy2(ISet<Integer> set) {
return set.collect(e -> 2*e);

}

13

Active evaluation:
● Adding e in set results in adding 2*e in the

target
● Removing e from set results in removing

2*e from the target
● Replacing p by e in set results in replacing

2*p by 2*e in the target

Limitation to immutable states:
● Function (e | 2*e) operates on immutable

states: e can never mutate, it can only be
added, removed or replaced in box set

● Active evaluation of collect is limited to
functions that do not manipulate mutable
state of its parameter: these functions are
called immutable functions

collect: bidirectional version
AOF bidirectionality:

IBox<Double> multBy2(ISet<Double> set) {
return set .collect(e -> 2*e, e-> e/2);

}

Reverse function:
● The reverse function e-> e/2 only exists if

the forward function is bijective
● Example: e->2*e is not bijective on

integers

14

Active evaluation:
● Adding e in the target results in adding e/2

in box set
● Removing e from the target results in

removing e/2 from box set
● Replacing: same principle

Infinite cycle:
Avoided by ignoring changes while propagating
one

collectMutable
OCL example:
def: allChildrenOf(pop : Set(Person)) : Set(Person) =

pop->collect(p | p.children)

AOF equivalent:
IBox<Person> allChildrenOf(ISet<Person> pop) {

return pop.collectMutable(p -> p.getChildren());
}

15

Active evaluation:
● Adding p in pop results in

○ adding all elements of p.children in the
target

○ observing p.children:
■ Adding c in p.children results in

adding c in the target
■ Removing c, Replacing c: same

principle
● Removing p, Replacing p: same principle

Bidirectionality:
● collectMutable is bidirectional but with some restrictions
● Box pop must contain a single p: it must be a singleton (an Option or One box)
● Adding child c in the target results in adding c in the children of p

switchCollect: Collecting Immutable Values
Depending on Mutable Conditions.

def: switchCollectExample(integers:Set
(Integer)) : Set(Integer) =

integers->collect(i |
if i.mod(2) <> 0 then

-i
else if i.mod(3) = 0 then

i*i
else

i
endif endif

)

16

IBox<Integer> switchCollectExample(ISet<Integer> integers) {
 return integers.switchCollect(
 newArray(i -> (i % 2) != 0, i -> (i % 3) == 0),
 newArray(i -> -i, i -> i*i),
 i -> i
)
}

Traceability: collectTo & collectedFrom
● collectTo computes a set of mutable objects by applying

a collector function to each source element.
○ It uses a cache to always return the same target object for a

given source object.
○ It requires bijectivity of the collector function.

● collectedFrom enables retrieving a source element from
a target element.

● A reverse collector function can be given to collectTo.
○ New elements can then be inserted in its result.

17

Debugging

● inspect pseudo-operation
○ logs every change to the box on which it is applied

● Boxes interconnections
○ graph visualization
○ expressions serialization

18

Testing
● Testing passive aspect of an AOF-based transformation

is like testing any transformation.
● Testing forward change propagation requires a specific

approach:
1. Execute transformation once: b = t(a)
2. Perform some change on a: c(a) resulting in a change on b: c’(b)
3. Execute transformation again: b’ = t(c(a))
4. Compare c’(b) and b’

● Testing reverse change propagation follows the same
scheme except b is changed at step 2.

19

Façade Demo

● Javadoc overview
● Basic UI for interactive demo
● Pipes overview
● Debugging support: detailed formatters

20

Rule Encoding
rule Class2Capsule extends Class2Entity {

from
source : UML::Class (

source.isStereotypeApplied(UMLRealTime::Capsule)
)

to
target : UMLRT::Capsule (

-- bindings here
)

}

addRule(new Rule<Class, EObject>(this, "Class2Capsule", UML_Class, UMLRT_Capsule, UMLRealTime_Capsule) {
public void bindContents(Bindings<Class, EObject> bindings, Class source, final EObject target) {

bindEntityContents(bindings, source, target);

// bindings here

}

});

21

Binding Encoding
target.parts :=: source.ownedAttribute->select(e |

e.isStereotypeApplied(UMLRealTime::CapsulePart)
)

bindings.add(target, "parts", source, "ownedAttribute",
isStereotypeApplied(UMLRealTime_CapsulePart)

);

22

Abstract Rule Encoding
abstract rule NamedElement {

from
source : UML::NamedElement

to
target : UMLRT::NamedElement (

target.name :=: source.name
)

}

private <S extends NamedElement> void
bindNamedElementContents(Bindings<S, EObject> bindings, S source,

 EObject target) {
bindings.add("name", target, source);

}
23

Rule Guard Encoding
rule Class2Passive extends Class2Entity {

from
source : UML::Class (

not (
source.oclIsKindOf(UML::StateMachine) or
source.isStereotypeApplied(UMLRealTime::Capsule)

)
)

to
target : UMLRT::PassiveClass

}

addRule(new Rule<Class, EObject>(this, "Class2Passive", UML_Class, UMLRT_PassiveClass,
MutablePredicate.<Class>isInstanceOf(UML_StateMachine).or(

isStereotypeApplied(UMLRealTime_Capsule)).not()

) {

public void bindContents(Bindings<Class, EObject> bindings, Class source, EObject target) {

bindEntityContents(bindings, source, target);

}

}); 24

Complex Select Example
target.attributes :=: source.ownedAttribute->reject(e |

e.oclIsKindOf(UML::Port) or
e.isStereotypeApplied(UMLRealTime::CapsulePart)

),

bindings.add(target, "attributes",
source, "ownedAttribute",

isInstanceOf(UML_Port)
.or(

isStereotypeApplied(UMLRealTime_CapsulePart)
).not()

);

25

Target Selection for Target Errors Detection
target.redefines->select(e |

e.oclIsKindOf(UMLRT::Entity)
) :=: source.redefinedClassifier->reject(e |

e.oclIsKindOf(UML::Collaboration)
)

bindings.add(
target, "redefines",

Predicate.isInstanceOf(UMLRT_Entity),
source, "redefinedClassifier",

isInstanceOf(UML_Collaboration).not()
);

26

Some Limitations
● Façades must be initially applied in the forward direction

(i.e., on a profiled UML model).
● Maximum one rule per target type.
● Unloading a Façade currently requires unloading both

source and target models.
● Some transformation structures are not supported yet in

reverse. But we have prototype resolutions for several.
● Performance (speed & memory footprint) not studied

yet.
○ But several simple optimizations already identified. 27

Some Perspectives
•

–
–

•
–

28

Model Synchronization Benchmark?

● Objective: enable easier comparison of model
synchronization solutions

● Approach: define a benchmarking framework
automatically measuring
○ propagation coverage (e.g., forward-only, reverse,

complex cases)
○ performance (e.g., initial speed, propagation speed,

memory footprint)
● Proposing it to TTC 2016? 29

Questions?

30

