
EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 1 | P a g e

© 2014 by Thales; made available under the EPL v1.0

TASK
Author: Benoît Langlois – benoit.langlois@thalesgroup.com

Version: 1.0

DEFINITION

A task is a low level service with an implementation.

OBJECTIVES

The objectives of a task are to:

 Execute low level services from code written in a language (e.g., Java, Ant) or for a

dedicated purpose (e.g., Acceleo task, text file format tasks).

 Unify the declaration and execution of low level services, whatever the used languages.

The interests are to:

 Define basic services reusable in different contexts.

 Seamlessly execute workflows of code written in different languages and tool

contributions.

CONCERNS

• The designer functionally assembles basic services.

• The designer executes tasks.

• The developer writes basic services in a language.

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 2 | P a g e

© 2014 by Thales; made available under the EPL v1.0

STRUCTURE

Figure 1. Task at the metamodel level

Comprehension:

• Metamodel level. A Task:

o Is categorized by a Task type. A Task is for instance designed to a language (e.g., Java,

Ant, Ruby Tasks) or tool (e.g., Acceleo Task).

o Has an implementation. A Java Task is for instance implemented by a Java Class.

o Can have an inheritance link with a super Task for Task specialization. In this case,

there is parameter inheritance.

• Task declaration at the instance level. The Task metaclass defines the formalism to declare

Tasks, such as Java or Acceleo Tasks. At the instance level, a Task declaration provides the

Task type (e.g., Acceleo), a Class to execute the type of Task, and the execution engine (e.g.,

an Acceleo Task is executed by the Acceleo interpreter).

• Tasks at the user level. Third time, at the user level, all the Task declarations define the

context to develop and execute user Tasks, for instance Java “HelloJava” or Ruby

“HelloRuby” Tasks.

o The Developer writes the Task implementation code, for instance the

implementation of the Java “HelloJava” Class with all the parameters it requires.

o The Designer declares a Task in an fcore file and the used implementation, for

instance a Java Task uses the Java “HelloJava” Class for implementation.

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 3 | P a g e

© 2014 by Thales; made available under the EPL v1.0

A user completely ignores the metamodel level and Task declarations. The Developer concern is

to implement Task code; the Designer concern is 1) to define the right off-the-shelf Task, 2) to

select a Task implementation developed by the Developer, and 3) to define the Task interface

with contracts (aka, parameters) in consistency with the parameters required by the

implementation.

EXAMPLE

This part exemplifies the case of two Tasks: 1) HelloInJava Task is a Java Task implemented by

the HelloJava.java Class, and 2) HelloInRuby Task is a Ruby Task implemented by the

HelloRuby.rb script. The two Tasks have an input/output parameter named “message”.

Figure 2. Task declaration

Declaration of tasks in an fcore file

Java Task Properties

Ruby Task Properties

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 4 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Implementation of the HelloJava.java Class

/**
 * This Java task
 * 1) Reads the "message" variable from the context
 * 2) Changes the "message" value
 * 3) Changes the "message" variable in the context with the new value
 *
 */

public class HelloJava implements ITaskProduction {

 String message = new String();

 public void preExecute(ITaskProductionContext productionContext,
 IProgressMonitor monitor) throws InvocationException {

 // Get "message" value from context
 message = productionContext.getInputValue

("message", String.class);
 }

 public void doExecute(ITaskProductionContext productionContext,
 IProgressMonitor monitor) throws InvocationException {

 // Change "message" value
 message = message + " from Java";
 }

 public void postExecute(ITaskProductionContext productionContext,
 IProgressMonitor monitor) throws InvocationException {

 // Change "message" value in the context
 productionContext.setOutputValue("message", message);

 }

}

This example shows how the “message” declared in the Java Task is read (in the preExecute

method) and updated (in the postExecute method). All the implementation steps can be written

in the same method (e.g., doExecute).

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 5 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Implementation of the HelloRuby.rb script

To read input contract values and write output contract values,
the class should extends the TaskProductionForRuby java class,
and override the preExecute(), doExecute() and postExecute() methods.

This Ruby task
1) Reads the "message" variable from the context
2) Changes the "message" value
3) Changes the "message" variable in the context with the new value

class HelloRuby < TaskProductionForRuby

 # ------- override the superclass preExecute() method --------

 def preExecute(context,monitor)

 # Get "message" value from context
 $_message = context.getInputValue("message", JavaLang::String.java_class);

 end

 # -------- override the superclass doExecute() method --------

 def doExecute(context,monitor)

 #-- Change "message" value from context
 $_message = $_message + " from Ruby"

 #-- Display on console
 puts $_message

 end

 # ------- override the superclass postExecute() method --------

 def postExecute(context,monitor)

 #-- Set "message" value from context
 context.setOutputValue("message", $_message);

 end

end

instantiate the class
HelloRuby.new()

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 6 | P a g e

© 2014 by Thales; made available under the EPL v1.0

PROCESS

The section presents the process dimension from the designer and developer viewpoints.

Designer viewpoint

Figure 3. Process – Designer Viewpoint

Create Task The Designer creates a Task with a type of Task in an fcore file.

Edit Task The Designer sets the Task name, defines the contracts (name, type,

input/output mode) as the Task parameters. He sets a super-Task if

needed.

Associate Implementation The Designer associates an implementation to the Task. He checks that

the Task parameters match the implementation parameters.

Table 1. Designer activities

The Designer has to take care of two points:

• Task naming: like in Java, a namespace in the Task name may reflect a classification to

organize Tasks.

• Task Contracts: a Task, as a low level service, requires parameters which define the Task

interface.

EGF TASK

EGF (Eclipse Generation Factories) - http://www.eclipse.org/egf 7 | P a g e

© 2014 by Thales; made available under the EPL v1.0

Developer viewpoint

Figure 4. Process – Developer Viewpoint

Develop Task Implementation The Developer realizes a Task implementation in a language or for a

given tool. He uses the parameters declared in the Task with the

context provided to the implementation.

Table 2. Developer activities

REFERENCES

Basic Tasks provided with EGF:

• Java Task

• Ant Task

• Jet Task

• Acceleo Task

Tasks available in EclipseLabs (http://code.google.com/a/eclipselabs.org/p/egf-portfolio/):

• Jython Task

• JRuby Task

• Acceleo2 Task

