Practicing Continuous
Delivery using Hudson

Winston Prakash

Oracle Corporation

Development Lifecycle

Typical turn around time is Sprint cycle is typically
© months to 1 year 2 weeks to 4 weeks

Typical Sprint Cycle

24h
? ﬁ e .
Product Backlog Sprint Backlog Sprint W‘;;'f,’:g;g&ﬁ;g"t
Reasonably working product
Sprint 1 '
Plan gmcg Develop gy Test g g

Sprint 2

Plan gmeg Develop ll Test g
Sprint 3
Plan gmg Develop Test g

Further Thought Process

0

> There are some greedy people out there
» They can’t wait until the end of the sprint cycle to get a working product
» They want a working product on every commit

Commit Buila Production
Magic Ready

Thus the Continuous Delivery concept was born

What is Continuous Delivery?

® A set of practices and principles aimed at

building, testing and releasing software
faster and frequently.

//: -'/9’/14)4:'1 /;/r}/y .‘/I?!Illl/lllr Sotens

CONTINUOUS
D ELIVERY

® Produce a deployable-to-production build
regularly, probably on each commit.

Jez HumBLE |
Davip FArRLEY

e Every build is a potential release.

Commit to deploy

In a Test Driven Development build pipeline,
Continuous Integration is the first step and the end

result is the Continuous Delivery.

While Continuous Delivery promotes the concept
of keeping your product in a deliverable state on
each commit, Continuous Deployment takes it
further. On each commit, the deliverable can be
deployed to a production environment.

Typical Hudson Cl Server Usage

Continuous Manual Manual
Integration Testing Delivery

N — | |

P

QA Operations

Acceptan Deploy

Function

Deploy-pro

Integratio Deploy-perf

Hudson is mostly tuned to focus on development teams

Build Pipeline

> Commit

D

> Build and Test

Unit tests

Static code coverage
Packaging
Integration tests

Ul tests
Performance tests
Regression tests
Deployment tests (install, uninstall etc.)
Manual exploratory tests
Regulatory, compliance checks
Clearance from UAT

ajowoad

ajowoud

» Stage and Deploy

s

compile . P
(r2) m

D (D (‘ﬁ
Unit-test package

—

ne

4 (

Run Integration test Deploy to integration

Test environment

>

4 (

Deploy to perf Run perf test -g
@Test environment g
< o
—{___ 4 (
Run Ul, Regression Deploy to Stagmg
UAT tests
By D ']

Deploy to production

Setting up Hudson to do Continuous Delivery

Continuous Continuous Continuous
Integration Testing Delivery

“ ” Automated Tests “ “ “

l Acceptanc-

Functional

Automated Deployment

Deploy-prod

NN

>

" Deploy-perfo

]

Build and U

> Integratio

—

s

4

C
Packag
Reposi

\

Resour
Reposi

ldentifying the relevant plugins and configuring
the jobs to participate in the pipeline is critical.

Setting up Cl Environment

A Centralized SCM repositories (Git, SVN, CVS etc)
Dedicated build servers

Continuous Integration software (Hudson)

Unit testing framework (jUnit, nUnit etc)

Build tool (Maven, Gradle, Ivy, Ant etc)
Deployment environment (Application Servers)
Build Dashboard (Hudson Ul)

Communication tool (E-mail, twitter, IRC etc)

Deployment Tool

- ffective practicing of CI

s B B -ﬂ
compile Unit-test package -

|

N—

Maintain a Single Source Repository.

Automate the Build

Make Your Build Self-Testing

Everyone Commits To the Mainline Every Day

Every Commit Should Build the Mainline on an Integration Machine
Keep the Build Fast

Test in a Clone of the Production Environment

Make it Easy for Anyone to Get the Latest Executable

Everyone can see what's happening

Choosing Hudson Plugin for Effective
practicing of Cl

http://wiki.eclipse.org/Hudson-ci#Hudson Plugins

X - —
Maintain a Single SCM

This principle encourages the project_team to use SCM to maintain

their source code. Hudson supports — &i - >

999% of Hudson users use one of Automate the Build
+ Git o Automating the build using a single ¢ = i‘__ - -
) (S:vvi o of a CI build. Hudson supports vario
. Ny ::.:. - -
Perfores Make your build self-testing
+ Clearcase 99% of Hudson users use one of
I CI build is not about catching cord = - —
+ Ant) more quickly and efficiently. Hud &,—' —
— * maven : sorks via Plugins.
B « gradle trvoke Frameworks via Plugins.
Hudson supports ~20 additional SCM wh{ . : Horend . .
Bl - 99% of Hudson users useonc of | VIAKe your build self-testing (Code Coverage)
+ Rake o - -
* -L%'::tt Test Result Self testing is best achieved if there is uniform code coverage. Hudson
. i 8 et 3 st (18) . . ot .
. Selenium supports various Code Coverage Tools via Plugins
Hudson supports ~40 additional build tools + CppUnit
+ TestNg Ao 99% of Hudson users use one of
« xUnit — —
~ * Clover
*» Cobertura
Hudson supports ~10 additional Unit Test w! . Emma Coverage Meve To
» Serenity -
* Sonar
» NCover

Hudson supports ~2 additional Code Coverage which are used by less than 1% of the users

Buildable Units

Important guideline of Cl is to build fast and give back
feedback quickly. To achieve this

e Rather than building the entire source in one single job,
divide the project sources into buildable chunks. Each

chunk of software must be able to build independent of
each other.

® The dependent chunks must be built separately and
stored in an artifact repository manager for other
software chunks to use them as dependencies.

® Each of the software chunks is a buildable unit and is
built by a single Hudson job.

Sherwood Library Build Architecture

Books Checkout

Back End REST API Web Interface

L

]

v

Backend Library API -~
r J

0
D
=
g 8
52 s
(7)) 7]
g 2
E Web Ul REST API &
@
=
w
L
J
r
v)
Back End REST API Web Interface

Books Return

Setting up upstream-downstream builds

Build Triggers Books Checkout
@ Build after other projects are built Back End RESTAPI Web Interface
Set up a trigger so that when some other projects fir L
convenient for running an extensive test after a builc]
Kol
L
This configuration is the opposite view of the "Build ¢ =]
- > Library API -
change the other automatically. 5 3
S o) 7 s
g :
Projects names | sherwood_checkout, sherwood_checko z RESTAPI a
Multiple projects can be specified like 'abc, def' %
1|

REST API Web Interface

Checkout_backe
Books Return

Checkout_re

Speeding up Cl Builds

sherwood_checkout

)

I

A 4
sherwood_checkout sherwood_checkout sherwood checkout
backend | REST \ |

Y

sherwood_checkout sherwood_checkout |} (“sherwood_checkout)

backend ‘ REST ’ WebApp ‘
Extended Tests) Extended Tests Extended Tests

\ /
\\‘. /

™ Buildable Sub Staged Builds
Units

« The first stage would do the compilation and localized unit tests. The
unit tests may be created with out any real time database or server
connections to keep it fast. (Mockito, Powermock)

* |In the second stage, the extended builds run different suits of tests, may
be with real time server and database connections.

Build pipeline plugin

) Z s’ ®mQ L

Caipnmsmndmw

Deploy to Tes Deploy to Pre-Prod Deploy to Prod
3Jun 26,2012 5:31:46 PM
U6 O.. ‘
a marcinp
e docs

l | | Deploy to Tes | | Deploy to Pre-Prod | | Deploy to Prod |
| Generate docs |

Cascading jobs

0

Job1

% Job Configurations

Project name ' sherwood_checkout_backend Job2

Cascading Project| sherwood_checkout_top_level

None

sherwood_checkout
sherwood_checkout_rest

—— sherwood_checkout_test_harness
L Discard Old B " sherwood_checkout_top_level
(| This build is pa sherwood=checkout=webapp

a
—_—

®@® OO

Description

/ Job3 2

ﬁ @ E-mail Notification @

Recipients

’dev_sherwood_checkout@sherwood_library.org, qQa__sherwood_checkout@sherwoed_library.org '

Whitespace-separated list of recipient addresses. May reference build parameters like $raraM. E-mail will be sent when a build
fails, becomes unstable or returns to stable.

@ Send e-mail for every unstable build
| | Send separate e-mails to individuals who broke the build @

Monitor Test Trends

Unit Test Trend Integration Test Trend
A e —————————————
120 .. 200
e 150
I I
60 b 100
N

50

0 m w w ~ oﬂ o - o~ m - w ('] ~ ©w — ~ " -t
o ~N m N #* - - - - - - - - - o~ o~ ~ o~
@ 1 z s # # # H H # # # # #* #* &T #
"
i' Ready for
Continuous Continuous Continuous
Integration Testing Delivery
' ‘ l Automated Tests I l l

Automated Deployment

In a Cl build, the unit tests should never fail.
During the initial stage of the project, the integration test may be in flux.

Monitor Quality Metrics Trend

Code Coverage Trend
Classes 45% Conditionals 74% Files 45% Lines 28% Packages B88%
100
90
80
;g = Classes
® 50 - Conditionals
40 |~ Files
30 | Lines
20 % ~Packages
10
o R S
s g g] 3 3 ¢
Line Count Trend

ow ..

om ..

ow

000
0
- (=3 ~m w] w0
S 8 g 3 2 g
d S 3 3 i i

Code quality measurement is important in Continuous delivery.
Improves the confidence of the product being deliverable state.

Automated Upload

(FTP)
As part of Build pipeline, often

@ Publish artifacts to FTP

FTP site

there may be requirements to

acceptance-test-machine

copy configuration files or Fils o upleed Source target/sql/*.sq!
database schemas, test Destinaton g
scripts, properties files, install
: : Delete
scripts etc., which are part of a |
build to another machine to SOUIEE. | target/propertes/*.txt
facilitate additional test run Destination | properties
Delete
Add
agratton Copeiting's ik CBeinery
\ l Automated Tests ll l

Automated Deployment

Integratio!

- -

Automated Execution

(SSH)

Il scri h i
Execute comma ndS on that @ Execute shell script oln remote host using ssh
. SSH site test- z g
remote machine to ready the —

. . Pre build script /usr/local/tomcat6/bin/shutdown.sh
mac h ine fO rau tO m at IC rm fusr/local/tomcat6/wepapp/test-app.war
d e p | Oy me nt rm -rf /usr/local/tomcaté/wepapp/test-app

Post build script /usr/local/tomcat6/bin/startup.sh

Fegraioon Copslat CBaReR

' ‘ ' Automated Tests I l I
Automated Deployment
Dev ' ’ ' /

Build and U

Automated Deployment

(Application Servers)

i Checkout_backend]

Deploy war/ear to a container
L WAR/EAR files **/% war
\ Checkout_rest] Container Tomcat 6.x
* L Manager user name zdmin
L WebApp Ul Checkout Ul] Manager password sesesses
Tomeat URL http://localhost:8080/

~ ,’
. .
A L

[Applicatio- Deploy on failure

Continuous Continuous Continuous
Integration Testing Delivery
, ‘ I Automated Tests I l I

Automated Deployment

A

Integratiol

Diamond build p
<

Join plugin triggers a job

after all the downstream
jobs are completed in
parallel. This allows a
pipeline to branch out to
perform many steps in
parallel, and then run
another job after all the

parallel jobs are finished.

<

attern

~

I 3

ajowo.d

Run Ul, Regression
UAT tests

Deploy to Staging

.G

B =

@ Build other jobs
Jobs to build

| Publish Javadoc

| Aggregate downstream test results

@ Join Trigger

Projects to build once, after all downstream projects have finished

Deploy to production

ui-test-job, regression-test-job
| Trigger even if the build is unstable

| Trigger even if some downstream projects @
are unstable

prod-deploy-job l@

_| Run post-build actions at join @

Automated Promotion

Though promoted build plugin provides opportunity to promote every
build, typically the promotion process is done for a pipeline

@ Promote builds when...

— Promotion process

Name | porf-test-promo

Icon | Gold star

a“

|| Restrict where this promotion process can be run

Criteria

|| When the number of builds success is satisfied
|| Promote immediately once the build is complete
|| When the following downstream projects build successfully

@ When the following upstream promotions are promoted

Promotion names | jntegration-test-promo

|| Only when manually approved

Actions

Build other jobs

Jobs to build [deploy_perf_job

Delete

Add action ¥

Add another promotion process

90 ® 6

®

(

ajowo.ad

i | (

<
N

Deploy to integration

lest environment
\@

Run Integration test

—> B |

Deploy to perf
Test environment

Run perf test

Hudson Book

ORACLE

Partl:

Practicing effective
Cl using Hudson

. ' A2

. Ky ; \4 N \: .

Part2:

Hudson plugin

Hudson Continuous development
Integration in Practice
Maximize Quality and Minimize Software Development Time httpi//WWW-amaZOH .COm/

Hudson-Continuous-Integration-
Practice-Burns/dp/
0071804285

Ed Burns
Winston Prakash

Foreword by Mike Milinkovich, Executive Director, Eclipse Foundation
Copyrighted Material

Oracle

Press

