Julia’s Comments: COSMOS SDD Runtime Architecture
Note: The version of the architecture that these comments are based on is copied at the end of this document. (Snapshot taken 5/29/2008)

Resource Handler Interface

My understanding is that this is represented as a pluggable interface because the SDD runtime may operate in the future on inputs other than SDDs. This seems odd, but my comments are based on the assumption that this is really what we want to do.

The architecture describes this interface as supporting the loading of resources that are input to the runtime. The components that implement this interface in the provided SDD runtime will load SDDs and SDD profiles. Theoretical future loaders will load data provided in other formats. Once loaded, the information in the SDD and profile will need to be provided to components in the orchestrator. This data will either be provided in a format directly tied to the SDD and the SDD profile, or another, possibly newly invented, format will be used. The components of the Orchestrator will operate on this data. The “first” component shown in the Orchestor is the Change Parser. Presumably this is the SPI component. The “second” component shown is the Change Analyzer. This component is also organized specifically around the SDD data as provided by the SPI interface.

1. My first comment is that it does not make sense to show the Change parser on the inside of this interface. I would expect it to be the code that makes up most or all of the SDD Handler and SDD Profile Handler.

2. My second comment is that the nature of this interface is not clear – even at a very high level. Stating that it allows inputs other than SDDs, then showing SDD-specific components in the orchestrator seems contradictory. In spelling out this interface, I see these options:
a. **** Use the SPI (Change Parser) interface, or the SDD and SDD profile themselves, as the format of the Resource Handler Interface. Let future loaders handle the translation from another data format to SDD-based data as exposed by the SPI.

i. pro: we get to focus on SDD now

ii. pro: Change Analyzer stays where it is in the picture.

iii. con: use of other formats requires translation to SDD concepts. (This might actually be a pro argument since all of the orchestrator is essentially operating using SDD concepts.)

iv. This is by far the option I prefer. If some other non-SDD input expects to be usable as input to an SDD runtime, it should be able to be translated into an SDD. Let’s leave the work of mapping from theoretical future formats into this runtime to the future and not spend time on it now.
b. Move both the Change Parser and Change Analyzer components to the outside of the Resource Handler interface and use the Change Analyzer output (an xml file) as the Resource Handler Interface. This moves the interface implementation deeper into the function stack so the name of the interface would need to reflect this new function of both loading input and doing an initial pass of analyzing that input.
i. pro: it moves all SDD-specific processing outside of the orchestrator. (Is it really a pro for the core orchestrator of the SDD runtime to not operate on SDDs??)

ii. con: the change analyzer output format will almost surely not work for CL2. In CL2 this component would need to perform subsets of analysis on demand rather than doing complete analysis and spelling out all possible change plans in its output.

c. Create a whole new format as a “generic” format that any input resource could be translated to.
i. Please, please don’t even consider this. It’s a trap that many have fallen into. Everyone thinks they can create a better generic format. But the SDD is exactly that effort. Don’t repeat it. Use it.

3. The possibility that components that implement this interface would load custom code and possibly be extended to be the callout to CMDBf apis has been mentioned. The loading, but not running of custom code, fits naturally here, since this is where the inputs are pulled in for the Orchestrator to operate on. Please see my comments on the System Checker to understand why I say here that I feel strongly that this is not where callouts to CMDBf apis or to code that executes custom code belong.

4. Use of the term “resource” is not wrong in the name of this interface, but it will cause us to spend lots of time explaining the difference between the input resources and the SDD resources that we will be discussing frequently.This is a pain when talking to folks outside the team. It is downright dangerous when it is people on the team who are mislead. This is essentially an input loader interface. Possible alternative names include:

a. Input Handler Interface
b. Input Loader Interface

c. Input Reader Interface

d. (Yes, these names overlap with the name of the next Interface. See my comments there.)

Input/Output Handler Interface

This interface kicks off the operation of the SDD runtime and provides an interface for output and feedback to the user of the SDD runtime as well as iterative requests to that user for input.
1. My only comment is that since the inputs handled under the Resource Handler Interface are presumably identified as inputs via this Input/Output Handler Interface, logically they seem like a subset of the overall Input/Output Handler Interface. My choice would be to somehow show this association, perhaps by combining the Resource Handler Interface and the Input/Output Handler Interface and just call it the Input/Output Interface. If this was done, the SDD Handler and Profile Handler could be put along side the CMD Handler and GUI Handler. I don’t feel too strongly about this but I do think it would communicate better the intent and placement of those components in the overall architecture.
Operations Handler Interface

To explain my comment, I need to spell out some assumptions I have. First is that one complete pass through the SDD Runtime will perform one operation on one SDD. (In CL2 this is the top level SDD and that one operation would include the processing of the aggregated SDDs.) Next is that any artifact type can be associated with any operation. For example an ant file might perform an install or configuration. So, there can be no assumption that knowing the operation in anyway subsets the type of artifacts that might be processed. Third is that the Change Resolver/Builder processing puts together a list of all the artifacts associated with the one operation being processed. (In CL1, this is a list of one.)

1. I believe the pluggable interface that is needed here is the one invoked to process an artifact. Processors for each different supported artifact type would be plugged in at this point. The components we provide that implement this interface would be the COSMOS Zip extractor and the COSMOS Custom Code Processor. The “other” components that fit in here would be things like RPM Handler and install.exe Handler.
Registration/Query Handler Interface

The existance of the MDR Handler and the CMDB Handler here tells me that this interface is where we would call out to Management Data Repositories to find out if a particular resource exists. (Is it fair to say that CMDB is one example of an MDR? Or do you think of it as a way to access a set of federated MDRs?) I also assume that this is where you would call out to register the resulting resources in an MDR.

1. My first comment is that “MDR Handler” seems like something generic and not implementable. Assuming this is there to represent a set of possible MDR Handlers, I suggest replacing it with the specific MDR(s) that will be supported by the SDD Runtime. Perhaps that is a Windows Registry Handler and a Linux Registered Programs Handler.

2. Next, I would like to suggest that the Registry Interface be separated from the Query Interface. Registry is a value-add. An SDD runtime could be implemented that did not perform registration. In order to make that perfectly clear and in order to allow reuse of this code in runtimes that choose not to support registration, it would be much preferable to separate these interfaces. We want someone to easily be able to leave behind all the registration-related code without breaking anything. This raises the question of what gets registered across this interface. One stated assumption of the SDD is that the processing of the artifact causes the setting of resource properties. This includes the registering of rpms, setting of Windows registry keys, etc. Anything that goes across this registration interfact is something above and beyond what artifacts are expected to do. We need to be very careful to get this boundary right. We don’t want to be in the position of requiring that the install be done using an SDD in order to later perform an update or to express a requirement on the resources installed.
3. Custom Code is one way that a query can be performed. I believe there should be a Custom Code Handler shown as one of the components that implements this interface.

External Application
Integration with external applications, as implied by the diagram, suggests that there will be code that calls out to existing application interfaces in order to process artifacts, perform resource queries or perform registration. Presumably these external applications would not be modified to implement the COSMOS interfaces. Instead, there would be some sort of glue-code that invokes these applications to perform the function required by the COSMOS interfaces.

1. I suggest that the glue-code be shown along with the Handler components in the appropriate places. For example, if you think of rpm as one of the potential external applications that would be integrated, and rpm handler would have to be created that implemented the artifact handler interface (aka operation handler) and translated that input into a call to rpm. I’m not necessarily suggesting that we show specific external applications (although it might help). I am suggesting that we make it clear that any use of external applications requires external application handlers.
System Checker
I assume that “system checking” is the act of finding out what resources are on the system and comparing that to requirements, conditions and results expressed in the SDD. I think it is important to separate the act of finding the resources and the act of comparing them to requirements, conditions and results. I also assume that the Query Handler Interface is where the act of finding out if one specific source (MDR, CMDB) knows about the resource. I believe that at the time that a specific resource needs to be queried, someone will have to decide who to actually ask to perform the query. Do you ask one of the MDR Handlers? Do you ask the CMDB Handler? Do you run the Custom Code Handler? Do you ask just one source? Do you keep trying until you find someone who knows about it? Or do you try all and compare answers? I assume that for COSMOS we will implement fairly simplistic logic for deciding who to ask and in what order.
1. I would like to see a component added to the picture that manages the queries to the different sources. The interface to this component (or at least one of the interfaces) would ask about a specific resource. This component would decide who to ask about the resource. For example, if it needed to run custom code to find out, it would call the SDD profile handler to load the required custom code and then call the custom code handler to have it executed.

2. I would like to see this new component be pluggable behind a new external interface. Possible names for this interface include Query Manager and Query Orchestrator. I think it is important to have this interface in addition to the Query Handler interface. Implementations can choose to plug-in more sophisticated logic for orchestrating the invocation of query handlers. Independently, new query handlers can be built that could work with any orchestrator.

3. This leaves System Checker with the job of invoking the Query Orchestrator and comparing the results with the requirement, condition or result that is being checked.

Change Parser
Is this the SPI? Is it the SPI plus something else?

1. I suggest explaining its relation to the submitted SPI component somewhere. If there is a reason not to mention the submitted components in this design, then at least extend the description to make the relationship clear.

Change Analyzer
I assume that this component is intended to perform the analysis function from the Change Analyzer.

1. I suggest changing the description to this:

The Change Analyzer is the core component of the SDD Runtime that is performs a first pass analysis of the SDD to group requirements on resources and group resources into unique combinations that can each satisfy the constraints on deployment represented by the SDD. This information supports the next phases of processing.

Change Resolver
I suggest the following modification to the description of this component to make it clear that the resolver is choosing the specific set of steps that will be used in a specific deployment environment. I also suggest some additions to talk about the components used by Change Resolver in order to perform the resolution.

The Change Resolver is the core component of the SDD Runtime that starts with the analyzed SDD data from the Change Analyzer and narrows it down to the specific steps or actions necessary to execute and statisfy the constraints of the SDD in the specific deployment environment. It interfaces with the System Checker and the Input/Output Handler Interface.

Change Builder
This doesn’t seem to have a function different from Change Resolver. Perhaps in a distributed environment this is where the set of identified steps would be grouped by target and perhaps parrallelized. Or perhaps the Builder would look at the dependencies elements in the SDD and use them to order the steps. For CL1, I can’t see what needs to be done beyond the resolution.

1. My comment is to either describe what this component does that is clearly distinct from Change Resolver or leave it out (for now).

	Contents

[hide]
· 1 Orchestrator

· 1.1 Change Parser

· 1.2 Change Analyzer

· 1.3 Change Resolver

· 1.4 Change Builder

· 1.5 System Checker

· 2 Interfaces

· 3 Resource Handler Interface

· 3.1 SDD Handler

· 3.2 SDD Profile Handler

· 4 Input/Output Handler Interface

· 4.1 CMD Handler

· 4.2 Automatron Handler

· 5 Operations Handler Interface

· 5.1 Executor Handler

· 5.2 Configuration Handler

· 6 Registration/Query Handler Interface

· 6.1 MDR Handler

· 6.2 CMDB Handler

· 7 Data Inputs

· 8 Artifact

· 8.1 Software Solutions Descriptor (SDD)

· 8.2 Profile

· 8.3 Profile Map

· 8.4 Custom Code

[image: image1.png]Orchestrator
The Orchestrator is the main controller of the SDD runtime. It is the main module that will be bootstrapped and once initialized will be responsible for class loading other components of the runtime. Its main task is to perform flow control among the components.

Change Parser
The Change Parser is the core component of the SDD Runtime that is used to read and assemble the SDD inputs, including the Profile, the SDD, and the Profile Map information if provided.

Change Analyzer
The Change Analyzer is the core component of the SDD Runtime that is used to allow for determining the effects of performing the actions defined by the SDD.

Change Resolver
The Change Resolver is the core component of the SDD Runtime that queries resources, environmental settings, requirements, and other provided services to make the determinations of the steps or actions necessary to execute and statisfy the constraints of the SDD.

Change Builder
The Change Builder is the core component of the SDD Runtime that is used to build out the list of steps that must occur to perform the changes as defined by the SDD input.

System Checker
The System Checker exists as a module that is available to the core components for querying various endpoints to compare against input definitions. This will include endpoints that define resources, environment settings, and requirements, and other custom provided endpoints.

Interfaces
The interfaces of the SDD Runtime serve as the contact points of the Orchestrator to handle the necessary inputs and outputs. Each of these interfaces provides a specific set of functions related to the external mechanisms that require handling.

Resource Handler Interface
The Resource Handler Interface provides a common interface for loading the resources necessary for starting a runtime execution session and consists of plug-ins that can be loaded to handle varying resources. For the reference implementation, two plug-ins will be authored in the COSMOS community. Those are the SDD Handler plug-in and the SDD Profile Handler plug-in.

SDD Handler
The SDD Handler plug-in is responsible for handling SDD input to the SDD Runtime. This includes the package descriptor.

SDD Profile Handler
The SDD Profile Handler plug-in is responsible for handling the SDD profile input to the SDD Runtime. This includes mapping resources defined in an SDD to profile to accompanying custom code if applicable. For example, if a profile references a resource that is not handled by the default set of resource handlers included with the runtime the SDD author must provide code to handle the referenced resource. The SDD profile handler establishes the linkage between resources and the resource handlers (in some cases custom resource handlers).

Input/Output Handler Interface
The Orchestrator uses the Input/Output Handler Interface to interact with the resources that provide input from the user or automated source. This interface provides a common layer that enables interaction with methodologies and sources that implement the necessary data inputs into the Input/Output Handler. For the reference implementation, handlers will be created that will expound on the interface to handle command line interaction and automatron interaction.

CMD Handler
The CMD Handler reference implementation is responsible for handling user input to the SDD Runtime via a command line interface. It will provide constructs into the mechanisms that allow for interactive data to be provided to the Orchestrator and for feedback as the Orchestrator progresses through the tasks defined for a given execution thread of the SDD Runtime.

Automatron Handler
The Automatron Handler reference implementation is responsible for passing input to the SDD Runtime from an external source such as a query-response file or other type of non-human interface. It follows the same constructs as the CMD Handler, only in a non interactive or graphical manner.

Operations Handler Interface
This handler interface is used by the Orchestrator to take the operations determined by the core that need to happen on the target system and perform said operations. Two reference implementations of this interface will be written that include an Executor Handler and a Configuration Handler.

Executor Handler
The Executor Handler provides the necessary constructs in order to perform a particular action as defined by the processing of the SDD. This includes actions such as install, uninstall, etc.

Configuration Handler
The Configuration Handler reference implementation is responsible for the actions that correspond to configuration of resources as defined by the processing of the SDD.

Registration/Query Handler Interface
The Registration/Query Handler Interfaces are used to respond to the qualified systems and services that manage the state of actions and events that the SDD Runtime has performed. For reference purposes, handlers for interacting with Management Data Repository (MDR) repositories as well as CMDB(f) services will be implemented.

MDR Handler
The MDR Handler performs the necessary actions to register services and data with a defined Management Data Repository (MDR).

CMDB Handler
The CMDB Handler reference implementation is responsible for communications to Configuration Management Database (CMDB) services about actions and data provided and performed by the SDD Runtime.

Data Inputs
The Data Inputs defines the collection of content that is necessary in order for the SDD Runtime to fulfil the task at hand.

Artifact
Artifacts are package contents that can be processed to create or modify software resources in the deployment environment.

Software Solutions Descriptor (SDD)
The Software Solutions Descriptor (SDD) is the data that represents the descriptions and constraints of artifacts and dependencies in a standard encoded and externalized way.

Profile
A Profile defines the vocabulary that enables SDD producers and consumers to accomplish this alignment for particular use cases and deployment environments

Profile Map
The Profile Map is an XML document mapped to the profile thru SML – a reference to custom code/handler.

Custom Code
Any pieces of executable code that are needed for performing an operation that is unsupported in a particular Profile at a core or reference implementation level.

