
adfa, p. 1, 2012.

© Springer-Verlag Berlin Heidelberg 2012

Model-Based Tool Qualification

The Roadmap of Eclipse towards Tool Qualification

Oscar Slotosch

Validas AG, Munich, Germany

slotosch@validas.de

Abstract. In this paper we describe the model-based approach to tool qualifica-

tion starting from the process model for the determination of the qualification

need until the model for test and qualification. The model-based approach can

automate many steps from checking the syntactical requirements completeness

until the determination whether all requirements have been implemented and

successfully tested. Many required documents like the “Tool Requirements

Specification” or “Tool Test Specification” can be generated from the model.

The model-based approach has been shown to fulfill all requirements from the

DO-330 standard which describes tool qualification for avionic, automotive and

other industries. Therefore the Eclipse Foundation has chosen this standard and

proposed a roadmap to provide support for the development of qualifiable

Eclipse-based tools. This paper describes the model-based approach and the

roadmap of Eclipse to support this process.

Keywords: Tool Qualification, Model-based, Eclipse, Roadmap, DO-330

1 Introduction

The amount of software in our world increases very fast. The usage of tools in the

development of this software in systems increases also. Therefore the correctness of

the software does not only depend on the development process of the software but

also of the tools used for the development of the software. For example static analyz-

ers can check the reachability of code or some potential errors in the code that had to

be detected using reviews. Test generation tools can automatically generate tests that

completely cover formalized requirement specifications and simulators allow to verify

software without their surrounding systems. However those tools can introduce or

hide safety relevant errors in the software.

This fact is reflected new standards for the development of safety critical systems as

the ISO 26262 [ISO26262], the DO-178C / DO-330 [DO330] and the IEC 61508

[61508]. These standards require to analyze all tools that are used within the devel-

opment process of the software. This includes also the integration and verification of

the software. All these standards have a three phase approach for using tools safely:

1) Classification: the tools are classified into classes that describe the confi-

dence (certification credit) they require in the development process of the

system. The classification is based on the analysis of potential errors in the

tool and their detection or prevention probability within the process. Note

that the confidence classes for tools differ among the different standards: tool

confidence levels in the ISO 26262, tool criteria in the DO-178C and tool

classes in the IEC 61508. Tools that do not require confidence since they

have either no impact or a high detection probability for all their potential er-

rors in the process can be used without qualification in the analyzed process-

es.

2) Qualification: Tools that require confidence in the analyzed processes have

to be qualified. Qualification might be restricted to the identified use cases

and to show the absence of critical errors. In the ISO 26262 there are many

qualification methods suggested (proven in use, process assessment, valida-

tion and development according to a safety standard). All qualifications

methods require a tracing from the use cases to the known bugs and mitiga-

tions. The safety standards are the clearest approach, since they prescribe all

actions in detail which does not leave so much room for interpretations and

makes the tool qualifications better comparable.

3) Usage: The tools can be used according to the known or found restrictions in

the development process. There should be a documentation that contains the

constraints from the process that have been considered in the analysis phase

and workarounds for all restrictions found during tool qualification.

The tool qualification (required for certification) has been considered to be difficult

since there were many unclear specified steps in the standards that left much space for

interpretation and since the amount of requirements that have to be considered manu-

ally was very high.

In this paper we present a model-based approach for tool qualification. This has the

following advantages:

 Clarity: the model has precisely defined elements and leaves (together with

it’s documentation) not much space for interpretation,

 Reusability and Transparency: since the model clearly states which require-

ments and functions have been qualified the qualifications can be easily

checked for their reuse in different tool chains,

 Completeness: the model covers all phases in the development process and

has been successfully traced against all requirements in the DO-330 standard

and

 Automatization: the model can be automated in the following ways:
o Consistency and completeness checks,
o Inference of confidence requirements from the process model part,
o Generation of documents from the model and
o Integration into development environments.

Therefore the model-based approach can reduce the qualification (and certification)

efforts dramatically and reduces tool qualification from a research topic to the essence

of correct software development which is well known since many years.

This paper presents the model-based approach that has been proposed for the integra-

tion into the Eclipse development environment but can also be used in a stand-alone

version for tools implemented using other IDEs or programming languages.

The model-based approach consists of the description and the model for the qualifica-

tion data. The paper is structured as follows: Section 2 describes the purpose and the

structure of the DO-330 standard. Section 3 describes the structure of the model and

different parts of the model are presented in Section 4, while Section 5 roughly de-

scribes the tool qualification process. Section 6 describes the roadmap to enable

Eclipse to support the model-based approach in an optimal way by integrating this

model into the meta-model of Eclipse plugins. Section 7 describe the used support

tools and Section 8 summarizes the approach.

2 DO-330

The DO-330 is called “Software Tool Qualification Considerations”. It has been cre-

ated to factor out the tool qualification topic from the standards DO-178C and DO-

278A and it is also applicable to automotive and other applications as well. Since

these other applications have different risk classes (for example ASILs in ISO 26262)

there is an interface to other standards and processes in the DO-330. It is called the

tool qualification level (TQL). There are five different TQLs (TQL-1 to TQL-5) that

have different rigorous approaches. TQL-1 is the most rigorous level with the most

requirements. The decision which TQL shall be used for which standard to create

sufficiently tool confidence depends on the risk class and the determined qualification

need. This mapping from tool criteria and risk class has to be defined in every stand-

ard. DO-178C and DO-278A contain such mappings (see Fig. 1), the ISO 26262 cur-

rently has no such mapping, since it appeared some weeks after the DO-330. A possi-

ble mapping for the ISO 26262 from ASILs and the tool confidence levels (TCL) to

the DO-330 TQLs would be the only necessary adaptation of the ISO 26262 to use

this standard with all it’s positive aspects mentioned in the previous section. Such a

mapping could be as defined as proposed in Fig. 1.

Fig. 1. : TQL-Mappings for ISO 26262 (proposed) and DO-178C

The structure of the DO-330 is according to the processes that shall be applied to

develop and qualify tools. As every safety standard it does not prescribe a concrete

process but poses requirements to processes that have to be satisfied. The structure of

the DO-330 is depicted in Fig. 2. It contains processes in sections and sub-processes

in subsections. The requirements within the DO-330 can be identified quite well using

the numbers in it’s sections and enumerations.

Fig. 2. Structure of DO-330

While the ISO 26262 determines the tool confidence level based on a detailed analy-

sis of use cases, potential errors and applied checks and mitigations the DO-178C and

IEC 61508 have a rather fixed classification from the tools into tool criteria and tool

classes. However the detailed analysis of the ISO can be applied also for the other

standards, since it is a typical safety technique. The DO-330 states in FAQ D.3 that

the tool criteria classification can be reduced by analyzing all uses cases of the tool

and their potential errors. Therefore we integrated this approach into the model and

we can reduce the tool criticality with this analysis for example by using redundancy.

3 Model-Based Qualification Approach

Model-based development is increasingly used in more and more processes, for ex-

ample model-based code generation, model-based testing, model-based risk analyses,

model-based design, documentation models, etc. The success of the models is caused

by the appropriateness of the models, the automatized model analyses and the outputs

of the models.

The Eclipse development tool (and other IDEs) are based on a meta model. It consists

of classes, packages, etc. The Eclipse meta model covers also many design aspects

using the plugin architecture, their export and import interfaces and contributions of

other plugins to tool’s functionality. The Eclipse modeling framework allows to gen-

erate code from design models. Also the integration process is specified using a meta

model. Therefore the current model of Eclipse covers some aspects to satisfy the DO-

330 (parts of architecture, design and integration) already. It can be depicted in Fig. 3.

Note that the development process does not need to be a strict V, but can be different-

ly organized. This meta models have been proved useful in the development with

Eclipse, however they cover only small parts of the DO-330. Therefore we propose to

extend the current meta model by new elements to cover also the missing phases of

the DO-330.

Fig. 3. Meta Model and Process Phases of Eclipse

In addition to the extended meta model we also need some instructions how to use the

model correctly. These are documented in the following three documents:

 Howto Qualify Eclipse-based Tools [HowTo]: Contains the liaison process

between the authority and the developer and some other steps like the appli-

cation of the qualification kits. Furthermore it contains a complete tracing

from all requirements in the DO-330 to the documents describing the model.

 Development Plan for every Qualifiable Eclipse Plugin [TDP]: Describes

how to develop the plugins and how to model development artifacts to satis-

fy the corresponding DO-330 requirements

 Verification Plan for every Qualifiable Eclipse Plugin [TVP]: Describes the

generic verification activities and artifacts.

Note that these generic documents can be applied for every plugin of Eclipse. The

plugin specific elements (plugin requirements, plugin design, code, tests,..) are mod-

eled as described in the generic documents. All plugin specific documents (from the

tool analysis in the plan of software aspects in certification (PSAC), until the verifica-

tion reports can be generated from the meta model and the integrated verification

tools.

The extended meta model covers the tool operational requirements (use cases), the

tool requirements (functions and architecture) and the low-level requirements (code

documentation in Eclipse) and the verification and qualification data. Also the other

processes are covered from the model (see Section 4).

Fig. 4. Extended Meta Model, Documents and Process Phases of Eclipse

4 The Tool Qualification Model

The tool qualification model contains all data that are required for tool qualification.

It is modeled with the Eclipse Modeling Framework [EMF] in a class diagram. Every

artifact required for qualification is contained as a class in the qualification model.

The tracing between the artifacts is modeled using associations. This allows a tracing

from the process model for the usage of the tools via a stepwise refinement into re-

quirements, code and test cases. Verification data classes for reviews and tests are

added to the model and have to be populated from the verification activities. Even if

the model is integrated in one big class diagram, it needs to be presented in several

parts corresponding to different process areas of the DO-330. Therefore the generic

tool development and the verification plans (see Section 3) have the following parts

that contain the description of details (attributes and relations) of the model:

 Tool Analysis Model: It describes the artifacts and potential errors and error

classes for the automated determination of the required tool confidence, see

Section 4.1,

 Tool Operational Requirements (TORs): It describes the different TORs re-

quired from the DO-330 and the assumptions for the user, see Section 4.2,

 Tool Requirements (TRs): It describes the different kind of requirements of

the tool,

 Tool Design: It contains the elements to describe the architecture of the tool

and integrates many design elements of plugins, EMF, xText, packages,

ecore diagrams, etc.

 Low Level Requirements (LLRs): It contains the LLRs that are an extension

of the Javadoc formatted comments within Eclipse code,

 Implementation: It contains stubs to refer to the existing code in Eclipse like

classes, methods etc. The stubs will be replaced with the existing models,

once the model has been integrated into Eclipse by QPP (see section 6),

 Qualitiy Assurance: It contains the models of existing problem reports, their

severity and the relations to tests and potential errors. This model has to be

filled from problem reporting system and

 Test and Verification: They describe the model to represent tests, reviews,

their results and relations to the requirements, etc.

In this paper we present only some parts of the model in the following subsections.

The model has been designed as simple as possible to satisfy the DO-330 using sim-

ple strings for the description of the elements like requirements, test cases, problem

reports, etc. This can be the basis for the integration of more sophisticated concepts

like requirement templates, test specification techniques etc.

4.1 Tool Analysis Model

The tool analysis model is used to support the determination of the tool qualifica-

tion level for the plugin based on an analysis of the functions of the plugin their po-

tential errors and mitigations. The model supports a systematic way to derive the po-

tential errors (black-box and white-box) and allows to compute the TQL automatical-

ly (see the tool chain analyzer tool for that purpose in [TCA]) as described in the ISO

26262 and allowed in the DO-330. The model is depicted in Fig. 5.

Fig. 5. Tool Analysis Model

The tool analysis model is depicted using pink color. It is contained in the plugin

project model (gray color) in two containers: Artifacts: contains all artifacts used by

this plugin and ToolAnalysis containing the potential errors, their mitigations etc.

Both containers are contained in the Project model that represents the information of

the plugin project required for tool qualification, for example the TQL and the maxi-

mal risk level (MaxRiscLevel). The TQL is computed as described in [ISO26262],

while the maximal risk level is a uniform interface to the risk levels of the different

standards (Risk class in DO, SIL in IEC 61508 and ASIL in ISO 26262) and is used

to compute the TQL from the maximal required confidence according to the table in

Fig. 6. Note that some standards might have deviations from this table, for example in

ISO 26262 a low confidence need (TCL 1) requires no tool qualification.

Confidence

Need

No Impact LOW MEDIUM HIGH

Risk Level 1 No TQL TQL 5 TQL 2 TQL 1

Risk Level 2 No TQL TQL 5 TQL 3 TQL 2

Risk Level 3 No TQL TQL 5 TQL 4 TQL 3

Risk Level 4 No TQL TQL 5 TQL 5 TQL 4

No Level No TQL No TQL No TQL No TQL

Fig. 6. Determination of the TQL

In contrast to [WPJSZ12] where the functions are guessed manually from an as-

sumed structure or the user manual of the tool, the analysis model in Fig. 5 has a well-

defined interface to the functions developed. The used functions in a plugin are mod-

eled as tool operational requirements (TORFunction) and refined to tool functions

(TRFunction) during the requirements engineering. Those two parts are modeled in

different colors (blue and green). Both elements have a common analysis interface

Function that is used to assign the input/output artifacts to the functions and to assign

the attributes that characterize the functions (FunctionAttribute) to them. Beside the

FunctionAttribute elements that characterize a function (white box strategy), a func-

tion can also be analyzed as black box by just considering it’s output Artifacts. The

Artifacts are also characterized by attributes (ArtifactAttribute). Both FunctionAt-

tributes and ArtifactAttributes are AnalysisAttributes and contain the following

AnalysisElements: PotentialError, Check and Restriction. AnalysisAttributes can

be derived from other AnalysisAttributes and can be subsumed to simplify the mitiga-

tion. Furthermore assumptions can be used in plugins (UseAssumption in Project)

and the analysis (Assumption in ErrorMitigation) to model constraints the user of the

tool has to respect.

The required confidence of a plugin is determined automatically from the given

model as follows: all functions are characterized by function attributes and artifact

attributes of their outputs and each analysis attribute has a set of typical errors. Those

errors have to be assigned to mitigations that have Probability elements to detect or

prevent the error if it would occur. The best mitigation for an error determines the

probability to mitigate the error, while the worst error mitigation probability deter-

mines the confidence need as follows:

 If all errors in a plugin have a high mitigation probability the plugin has

LOW qualification need / or confidence level,

 If at least one error has a medium mitigation probability the plugin has

MEDIUM qualification need / or confidence level and

 If at least one error has no or low mitigation probability the plugin has HIGH

qualification need / or confidence level.

The tool transition criteria (see Section 5) ensure that the functions are analyzed

systematically within the tool qualification alpha state.

4.2 Tool Operational Requirements

The TORs describe how the tool is operating in it’s environment. They can be seen

as a description of the use cases of the tool. The provider of a plugin describes the

developer use cases (from his point of view), while the user of the tool can use those

unchanged or adapt it to his needs. The TORs are the top level requirements. The

model of the TORs and some related elements is depicted in Fig. 7. Note that there

are further requirements, not depicted in this overview, for example to describe inter-

faces, the architecture etc.

Fig. 7. Tool Operational Requirements Model

The TOR model is structured similar to the tool analysis model. All elements are in

containers that are contained in the Project element that contains the plugins qualifi-

cation data (grey color). The TORs (blue) consists of an abstract class ToolOpera-

tionalRequirement. It has different sub classes for different kinds of requirements

required from the DO-330. For example the functional operational requirements

(TORFunction) are required to be considered in the tool operational requirements

definition process (DO-330-5.1) in the consistency verification step (DO-330-5.1.2.b)

and shall be contained in the tool qualification plan (DO-330-10.1.2.c). The format

requirements (TORFormat) are required from the DO-330 in section 10.3.1 where the

formats of input and output files in the operational environment shall be contained.

The TORAssumption class is used to model assumptions to the usage of the tool, for

example to avoid some constructs or to perform checks to verify the output of the

tools. The assumptions are the interface from the tool to the user of the tool to ensure

a save development process. Furthermore there are operational requirements on the

context in which the system should run (TORContext for example required by DO-

330-10.3.1.b) and there are other requirements (TOROther) that can be used to model

other operational requirements of the tool.

All TORs (use cases) have to be mapped to tool requirements (functions) are that

implemented in the tool using LLRs (LowLevelRequirement) and have references to

the code (ImplementationReference). The architecture requirements (Architec-

tureRequirement) are modeled as special cases of tool requirements (ToolRequire-

ment). These elements are modeled like the TORs. However Fig. 7 shows only the

abstract elements to illustrate the structure. More details can be found in the tool de-

velopment plan.

5 Tool Development and Qualification Process

The tool development process is not restricted except that it is required to use the

model to document the development steps. This can be done before, during or after

the development of the code, thus supporting also the qualification of existing tools

and plugins. However it is recommended to stick to established software-engineering

processes.

The qualification process makes use of the tool qualification model. Especially the

tool life cycle and the transition criteria can be determined automatically based on the

model. The transition criteria define different development stages of the tool/plugin

from the qualification point of view. This has the advantage that the well working

development processes of the Eclipse community do not need to be changed, but they

are enriched by an addition attribute the “qualification stage” that is independent from

the other processes. Qualified tools/plugins must have the stage “Qualification Re-

lease”

The following qualification stages are defined for each plugin and have a formal

definition that is based on the qualification mode:

 Unqualified Pre-Alpha Release: The plugin is an undefined, unknown

qualification state, for example if the model is missing,

 Qualification Alpha-Release: The TORs are defined and TQL is deter-

mined for the plugin. It is “analyzed”,

 Qualification Beta-Release: All requirements (TORs and TRs) are de-

scribed and have links to LLRs and Code. The plugin is “feature complete”,

 Qualification Release Candidate: All required verification steps are de-

fined. No open bugs of the category Blocker are available. The plugin is

“Verification Defined” and

 Qualification Release: Verification has been successfully executed and is

documented within the qualification kit. The plugin is “Successfully Veri-

fied”.
The qualification stages are based on each other, i.e. the qualification beta-release

requires the alpha release and additional constraints. If some elements, e.g. require-

ments are changed this invalidates the verification data that bases on this element such

that the qualification stage is reduced.

The transition criteria are defined on the qualification data using their attributes and

relations from the qualification model. For example the transition into the alpha re-

lease requires (among other similar checks) that the qualification model of the plugin

has at least one TORFunction element defined in the plugin and that this has a

nonempty name and description and the CM status is reviewed. The TORFunction

element should have an Artifact element assigned as input or output and at least one

potential error. All details of the transition criteria are described in the tool develop-

ment plan.

The qualification process for a tool is as follows:

1) Determine the plugins required for the tool,

2) Classify the plugins, i.e. reach the qualification alpha state in the correspond-

ing qualification models and determine the TQL of the plugins and

3) Qualify the plugins that require confidence according to the determined

TQL.

The assumptions of the required plugins under which the TQL is computed have to be

satisfied. If they are not satisfied by construction of the tool they will correspond to

assumptions of the tool that have to be satisfied from the user of the tool.

Similar to the development of Eclipse-based tools, where plugins can be integrated

and reused the qualification information (classification and qualification kit) can also

be reused in several tools. This enables a modular qualification approach and makes

the qualification of plugins that are used in many tools to a common interest of all

users of those plugins that want to qualify their tools.

6 Roadmap of Eclipse

Since currently Eclipse does not support tool qualification but many tools that require

tool qualification base on Eclipse there should be tool qualification support for

Eclipse to ease the qualification of those tools. Validas AG has developed a roadmap

towards the qualification of Eclipse-based tools within the automotive industrial

working group of Eclipse [AutoIWG]. It consists of the following steps:

 Goals Agreement: The goals of the roadmap are to enable the tool qualifica-

tion of Eclipse-based tools according to the DO-330 which is applicable to

all domains. This shall not change the normal process of Eclipse, but gives

the possibility to analyze, develop and qualify critical parts of Eclipse-based

tools.

 Concept Elaboration: The concept is to use the model-based tool qualifica-

tion on the level of Eclipse plugins as presented in this paper.

 Concept validation: The concept will be validated in two steps, that both will

improve the concept:

o Demonstrator: A small tool will be developed and qualified accord-

ing to the concept. We selected the implementation of the transition

criteria checker of the DO-330 model as demonstrator application.

This will show the feasibility of the concept and provide us with es-

timations on the required effort,

o DO-330 Review: The DO-330 review shall review the presented

concept and the work products produced during the demonstrator

and shall verify if the DO-330 is covered correctly by the concept

and the demonstrator,

 Qualifiable Plugin Projects (QPP): This will be a typical Eclipse project that

will extend the current plugin mechanism such that it supports the creation of

the qualification model (with the tools mentioned in section 7) during the

development and the generation of the plugin specific documents from the

model and

 Qualification: Selected plugins of Eclipse will be qualified. For the selection

and the qualification there will a business model and an ecco system of peo-

ple (“Validators”) that qualify tools and verify the necessary conditions.

Note that there are some mechanism of Eclipse that ensure the modularity

and the correctness of the approach that are of highest priority to qualify.

Eclipse follows this roadmap towards tool qualification within the work package 5

of the automotive IWG [AutoIWG] for an actual status of the roadmap and some

presentations of the topic.

7 Tools

There are many tools that can be used with a model-based tool qualification. The

tools may also differ in different IDEs. However it is required to integrate them into

the generic development plan such that the plan satisfies the DO-330 requirements.

For Eclipse we propose a configuration and description of supporting tools that has

been successfully checked to fulfill the DO-330 requirements in the chosen configura-

tion. The proposed tools are: Git, [Gerrit], Bugzilla and [CodeCover].

8 Conclusion

New Standards like the ISO 26262 allow to classify the tools according to the used

processes and also the DO-330 states in FAQ D.3 that this is possible. Therefore the

presented model-based tool qualification approach seems to be very promising, espe-

cially since the integration into Eclipse can reduce the overhead for qualification sig-

nificantly. Currently the approach is evaluated by developing a Eclipse plugin accord-

ing to it. Of course further relevant plugins of Eclipse and some Eclipse parts need

qualification as well [HowTo] but this work enables the model-based tool qualifica-

tion and will be the basis for all further qualification activities of Eclipse.

This classification approach has been applied from many users [HRMSP11],

[WPJSZ12], but the combination of the classification model with the development

model is new and also for the Eclipse tool there is neither a classification, nor a quali-

fication model available.

The effort for development of qualifiable tools can be split into the effort for develop-

ing a reliable tool (starting from the requirements until the test that completely cover

the code) and the effort for providing the documentation to make it evident to the user

of the tool or a certification authority. While the effort for developing a reliable tool is

high, the additional effort for documenting this should be quite low. Therefore the

development of qualifiable tools should not be much more work than the development

of reliable tools. For non-reliable tools the effort for making it reliable is surely high-

er.

The development of reliable systems is something quite well studied based on the

domain specific standards. Speaking in terms of [Rus11], this work is the construction

of a specific safety case [BB98], however focused on tools and not on systems such

that the safety claim is that the used tools must not corrupt the safety of the developed

systems. The development of reliable tools requires many verification steps like re-

views and tests that should be performed by trustworthy persons.

For that purpose we propose to create the role “Validator” in the Eclipse community

that is a specialization of the “Committer” role for tool validation. The Validators task

is to validate that the required verification steps are executed correctly. This can be

supported with a public visible profile like the traders in ebay have. The Validators

can gain positive ratings if they successfully verify activities. If their verification turns

out to be false they will get negative feedback. Being a positive Validator will be even

more desirable than being an active committer.

Acknowledgments

We would like to thank the Eclipse Foundation and it’s automotive industrial working

group for supporting us in the development, especially Mario Driussi. Furthermore we

like to thank Stefan Dirix and Natacha Tchebetchou for their contributions to the

roadmap and BMW CarIT (Michael Rudorfer und Tilmann Ochs) to support the de-

velopment of the demonstrator. For review comments we would like Jan Philipps and

the unknown reviewers of this paper.

Especially we would like to thank all authors of the DO-330 to provide the first gen-

eral safety standard for tool qualification that could be adopted for Eclipse so easily.

References

[61508] International Electrotechnical Commission, IEC 61508, Functional safety of

electrical/electronic/programmable electronic safety-related systmes, Edition 2.0, Apr

2010.

[AutoIWG] Automotive Eclipse Automotive Industrial Working Group for tool quali-

fication, see http://wiki.eclipse.org/Auto_IWG_WP5

http://wiki.eclipse.org/Auto_IWG_WP5

[BB98] P. Bishop and R. Bloomfield. A methodology for safety case development. In

Safety-Critical Systems Symposium, Birmingham, UK, Feb. 1998. Available at

http://www.adelard.com/resources/papers/pdf/sss98web.pdf.

[CodeCover] An open source glass-box testing tool, http://codecover.org/

[DO330] RTCA. DO-330: Software Tool Qualification Considerations 1
st
 Edition

2011-12-13.

[EMF] The Eclipse Modeling Framework, see http://www.eclipse.org/modeling/emf/

[Gerrit] Code Review Tool for Git, see http://code.google.com/p/gerrit/

[HowTo] Eclipse (Proposal): How-To Qualify Eclipse-Based Tools, Version 1.0, to

be published when reviewed.

[HRMSP11] Joachim Hillebrand, Peter Reichenpfader, Irenka Mandic, Hannes Siegl,

Christian Peer: Establishing confidence in the usage of software tools in context of

ISO 26262 In SAFECOMP 2011.

[ISO26262] International Organization for Standardization. ISO 26262 Road Vehicles

–Functional safety–. 1
st
 Edition, 2011-11-15.

[Rus11] Rushby, J. 2011, ‘New Challenges In Certification For Aircraft Software’

EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.

[TCA] Tool Chain Analyzer Tool, can be downloaded from

www.validas.de/TCA.html

[TDP] Eclipse (Proposal): Tool Development Plan for every Qualifiable Eclipse

Plugin, Version 1.0, to be published when reviewed.

[TVP] Eclipse (Proposal): Tool Verification Plan for every Qualifiable Eclipse

Plugin, Version 1.0, to be published when reviewed.

[WPJSZ12] Martin Wildmoser, Jan Philipps, Reinhard Jeschull, Oscar Slotosch Ra-

fael Zalman. ISO 26262 - Tool Chain Analysis Reduces Tool Qualification Costs. In

SAFECOMP 2012.

http://www.adelard.com/resources/papers/pdf/sss98web.pdf
http://www.eclipse.org/modeling/emf/
http://dl.acm.org/author_page.cfm?id=81488644627&coll=DL&dl=ACM&trk=0&cfid=153584553&cftoken=53059005
http://dl.acm.org/author_page.cfm?id=81488669705&coll=DL&dl=ACM&trk=0&cfid=153584553&cftoken=53059005
http://dl.acm.org/author_page.cfm?id=81488651774&coll=DL&dl=ACM&trk=0&cfid=153584553&cftoken=53059005
http://dl.acm.org/author_page.cfm?id=81488654463&coll=DL&dl=ACM&trk=0&cfid=153584553&cftoken=53059005
http://dl.acm.org/author_page.cfm?id=81488672942&coll=DL&dl=ACM&trk=0&cfid=153584553&cftoken=53059005

