
Click to edit Master subtitle style
Eclipse UOMo
Embedded Measurement

Our Goal

Avoiding Interface
and

Arithmetic Errors

Emphasis

Most of today’s technologies including the
current Java Language Releases lack

support for common non-trivial Arithmetic
problems like Unit Conversions.

§ Present Situation
- Historic IT Errors and Bugs
- Cause of Conversion Errors

§ Proposed Changes
- Unit and Measure Support
- Type Safety

§ Case Studies
§ Demo
§ Q&A

Summary

§ Patriot Missile
The cause was an inaccurate calculation of the time since
boot due to a computer arithmetic error.

§ Ariane 5 Explosion
The floating point number which a value was converted
from had a value greater than what would be represented
by a 16 bit signed integer.

What do these disasters have in common?

§ Mars Orbiter
Preliminary findings indicate that one team used English units
(e.g. inches, feet and pounds) while the other used metric units
for a key spacecraft operation.
- NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering team

used English units of measurement while the agency's team used the more
conventional metric system for a key spacecraft operation

- This also underlines the added risk when 3rd party contractors are involved or
projects are developed Offshore

What do these disasters have in common?

23rd March 1983. Ronald Reagan
announces SDI (or “Star Wars”):
ground-based and space-based
systems to protect the US from attack
by strategic nuclear ballistic missiles.

NASA “Star Wars” Experiment, 1983

1985

Mirror on underside
of shuttle SDI Experiment:

The Plan

Big mountain in
Hawaii

1985

SDI Experiment:
What really
happened

1985: What happened?

NASA Mars Climate Orbiter, 1999

§ All previous example illustrate three
categories of errors difficult to find through
Unit Testing:
- Interface Errors (e.g. millisecond/second, radian/degree,

meters/feet).
- Arithmetic Errors (e.g. overflow).
- Conversion Errors.

Unit Tests did not find these Errors

§ Ambiguity on the unit
- Gallon Dry / Gallon Liquid
- Gallon US / Gallon UK
- Day Sidereal / Day Calendar
- ...

§ Wrong conversion factors:
static final double PIXEL_TO_INCH = 1 / 72;
double pixels = inches * PIXEL_TO_INCH

Causes of Conversion Errors

§ Java does not have strongly typed primitive
types
(like e.g. Ada language).

§ For performance reasons most developer
prefer primitive types over objects in their
interface.

§ Primitives type arguments often lead to
name clashes (methods with the same
signature)

s

Present Situation

Unified Code for Units of Measure
§ The Unified Code for Units of Measure is a code
system intended to include all units of measures
being contemporarily used in international science,
engineering, and business. The purpose is to
facilitate unambiguous electronic communication
of quantities together with their units. The focus is
on electronic communication, as opposed to
communication between humans. A typical
application of The Unified Code for Units of
Measure are electronic data interchange (EDI)
protocols, but there is nothing that prevents it from
being used in other types of machine
communication. How does it relate?

UCUM

Unified Code for Units of Measure

The Unified Code for Units of Measure is inspired
by and heavily based on
§ ISO 2955-1983
§ ANSI X3.50-1986
§ HL7's extensions called ISO+

UCUM

Base Classes and Packages
§ Namespace: javax.measure.*
§ Only one interface and one abstract class

- Measurable<Q extends Quantity> (interface)
- Measure<V, Q extends Quantity> (abstract class)

§ Three sub-packages
- Unit (holds the SI and NonSI units)
- Quantity (holds dimensions mass, length)
- Converter (holds unit converters)

JSR-275

Units and System of Units

 © 2007-2009 Creative Arts &
Technologies

Results with
Same Dimension Different Dimension

Binary Operations Binary Operations

plus (double) or (long) root(int)

times(double) or (long) power(int)

divide(double) or (long) times(Unit)

compound(Unit)divide(Unit)

Unary Operations

inverse()

Unit Operations

Units of Measure API
§ Namespace: org.unitsofmeasure.*
§ Only interfaces and one abstract class

- public interface Quantity<Q extends Quantity<Q>>
- public interface Unit<Q extends Quantity<Q>>

§ Two sub-packages
- quantity (holds dimensions mass, length)
- util (misc items and helpers, optional)

The King is Dead…

Mobile Sensor API
§ Namespace: javax.microediton.sensor*
§ Focusing on Sensors, but it got a
minimalistic Unit API “in the closet”
- Unit

Essentially an SI singleton holding relevant unit constants, too.
- ChannelInfo

Holding name, accuracy, data type,measurement ranges, scale and
unit

- MeasurementRange
Range of possible values from minimum to maximum

JSR-256

Sensor States

JSR-256

Sensor Groups
§ Context types categorize sensors into
three groups:

1. ambient, sensors measuring some ambient
property of the environment

2. device, sensors measuring properties related
to the device

3. user, sensors measuring some function of the
user

§ By using context types, it is possible
to find, for example, user-related
sensors for fitness, or ambient
sensors for smart home controlling.
Although the granularity of this level
does not qualify the sensors very
precisely, still in some cases it
provides the way to make the
distinction, for example, cf. air
thermometer (ambient) / clinical
thermometer (user).

JSR-256

Quantity
§ The quantity provides a more precise qualifier. The

unit and the quantity has a close relation. Some
quantities are listed in tables of Unit class. When
the quantity and context type is known, it is often
easy to guess the full purpose of the sensor. Some
examples are given here:

Quantity: electric_current + context type:
ambient = sensor measuring electric current,
amperemeter
Quantity: catalytic_activity + contex type:
ambient = sensor measuring catalytic
activity

JSR-256

Measurement Package
§ Namespace: org.osgi.util.measurement
§ SI only Unit API “in the closet”

- Unit
Essentially an SI singleton holding relevant unit constants, too.

- Measurement
Represents a value with an error, a unit and a time-stamp.

- State
 Groups a state name, value and timestamp.

OSGi

Eclipse UOMo

One Small Step…

One Unit Framework to Measure them All
§ Namespace: org.eclipse.uomo.*
§ Two main areas

- Static Type Safe Units of Measure Support
- Based on Units of Measure API
- On top of ICU4J, the Globalization standard at Eclipse and

others (Android, GWT, Google Financial, etc.)
- UCUM Reference Implementation
- Successor to Eclipse OHF UCUM Bundle

Eclipse UOMo

Monetary systems are not currently in scope for UOMo,
but this illustrates, how easily the framework can be
extended to non physical or scientific quantities.
Such extension can be valuable by leveraging the
framework’s capabilities (formatting, conversion,…)
and applying its usefulness beyond what e.g.
java.util.Currency now has to offer.

Case Study: Monetary System

Monetary Types

Currency Conversion

What happens, if we use built in java.util.Currency and Standard JSP formats

Trading Example

We’ll extend MoneyDemo to show fuel costs in Indian
Rupees.
First by adding a new currency to MonetarySystem.

// Use currency not defined as constant (Indian Rupee).public static final DerivedUnit<Money> INR = monetary(
new Currency(„INR„));

UnitFormat.getInstance().label(INR, „Rp");

Then add this line to MoneyDemo.
(also change static import to MonetarySystem.*;)

Money Demo (1)

Next set the Exchange Rate for Rp.
((Currency) INR).setExchangeRate(0.022); // 1.0Rp = ~0.022 $

Note, the explicit cast is required here, because getUnits()
in SystemOfUnits currently requires a neutral <?> generic
collection type.

Money Demo (2)

Then we add the following line to the “Display
cost.” section of MoneyDemo
System.out.println("Trip cost = " + tripCost + " (" +
tripCost.to(INR) + ")");

Trip cost = 87.50 $ (3977.26 Rp)
Resulting in the additional output:

Money Demo (3)

Eclipse – Project UOMo
http://www.eclipse.org/proposals/uomo/

UCUM
http://www.unitsofmeasure.org

Units of Measure API
http://www.javaforge.com/project/uom

Links

http://www.eclipse.org/proposals/uomo/
http://www.eclipse.org/proposals/uomo/
http://www.unitsofmeasure.org/
http://www.javaforge.com/project/uom

Questions

werner@emergn.com
or

info@catmedia.us

Twitter: @wernerkeil

mailto:werner@emergn.com
mailto:Info@catmedia.us

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

