
Bysant Serializer
This is a draft document

M3DA Serialization specification

Document history

Date Version Author Comments

Oct 19th 2011 1 C. Bugot First released version

Dec 23rd 2011 2 J. Desgats Complete syntax

Reference documents

Table of Content

M3DA Serialization specification
Document history
Reference documents
Table of Content

Introduction
Definitions
Notations

Object types
Null
Boolean
Number

Integers
Floating point numbers

String
List
Map
Custom objects

Class definition
Object instance

Decoding process
Syntax reference

General items
Serialization contexts

Context 0: Global
Context 1: Unsigned Integers and Strings (UIS)
Context 2: Numbers
Context 3: 4 bytes signed integer only (Int32)
Context 4: 4 bytes floating numbers only (Float)

Context 5: 8 bytes floating numbers only (Double)
Context 6: Lists & Maps

Introduction

Bysant is a binary byte-aligned serializer. It has been designed to easily fit M3DA protocol needs both in terms of
bandwidth efficiency and flexibility.
The serialized stream is self descriptive, you do not need to transmit a model to be able to deserialize the stream.
The serialization is done using bytecode planes that define how the different object are to be serialized. Theses
planes are contextual, it means the plane to use may depend on the serialization context.
This specification defines how to use a context plane and when to switch the context plane.

Definitions

Byte Ordering: Unless specified otherwise, the byte ordering used in this specification is Big Endian (also know as
network byte order) i.e. bytes are serialized with most significant bytes first.

Notations

Object types

The Bysant serializer defines a certain number of object types. The elementary object types are usually easily
mappable on common programming language types. In addition to the elementary object types Bysant allows
defining custom objects that will be serialized efficiently.

Null

The Null object is used to represent a null value. The principal use of this object is to set a custom object field to a
null value when no actual value is available.

The Null object is different from Boolean false, from Integer 0, and from the empty String "".

Boolean

This object can have a value , or .true false

Because of the byte alignment constraint this protocol serializes one boolean per byte.

Number

A Number object can represent a wide variety of number values, either integer values or floating points values. This
object is commonly derived into subtypes that add constraints on the number.

Integers

The Integer object can be either a signed or unsigned integer value. The number of bytes needed to serialize the

object depends on both the value and context plane. As a general rule of thumb, smaller values use less bytes than
bigger value.
Integers value are represented by variable size integers, 32-bit and 64-bit integers. Each context plane may define
different types of integer decoding.

Floating point numbers

The floating points numbers can be either 4 byte (float) or 8 byte (double) long. The decoding of floating number is
done using IEEE 754 specification.

String

The String object defines a string of bytes that does not necessarily represent printable characters: it can contain
binary data.
When textual content is intended, then UTF8 encoding should be used.

The information on the nature of the String object (if the content is binary or text encoded using
UTF-8) is not defined by this serialization specification. This needs to be defined at the
applicative level.

List

A List object is an ordered object container.
At the serialization level, a List object can optionally specify the decoding context plane to use for the objects it
contains.

An unknown size list contain null as a value because it is used as terminator.cannot

Map

A Map object is a non ordered container, content is stored as key value pairs.
At the serialization level, a Map object can optionally specify the serialization context plane to use for the values it
contains. The keys of a Map object always use the context plane. Null is aUnsigned Integers and Strings not
valid key for maps (either fixed or unknown size).

Custom objects

In addition to the primitive objects defined above, Bysant allows to define custom composite objects.

Class definition

Before a custom object can be used its class needs to be defined. The class definition can be serialized in the
stream (in-band) or can be defined externally (out-of-band). Any in-band class definition must override out-of-band
class definition.

The class definition gives at least the ID of the object and the list of fields that defines this object along with their
serialization context plane (short form). Optionally field names can be given to have cleaner data structures in
dynamic languages (full form).

A class can be redefined in the middle of a stream.

As in a List object, the fields of an object are ordered and in the same order as the fields defined
in the class (no matter if fields names were given or not).

Object instance

A custom object instance cannot be deserialized if the custom class definition is not known beforehand.

If such a case occurs, then the stream must be discarded and marked as syntactically incorrect.

The custom object is deserialized field by field using the custom class and the per field defined context plane. The
object fields are ordered and follow the same order as the class defined fields.

Decoding process

This specification explains how to deserialize (decode) a stream. The serialization (encode) process should be
inferred from the following specification and is not detailed here.

The initial context ID is set to 0 (Global plane).

The input of this process is a byte stream. Once a byte is read it is discarded from the stream and the next byte to
read is the next byte in the stream.

The output of this process is a Bysant object: either a primitive object or a custom object.

When the currently decoded object is a container object (List, Map or Custom Object) then the decoding is
recursively done in order to complete the current object.

The decoding context is restored to its initial value when the current object decoding is finished.

The first byte(s) of the stream is(are) read. It is matched to the bytecode map of the current decoding context. Then,
depending of the context plane, additional bytes are read in order to decode the object. If the current object is a
container, the decoding process is recursively applied for the subsequent objects, optionally changing the decoding
context for each sub object.

Syntax reference

Notation conventions:

All ranges are inclusive
All numbers are big endian
BYTE is an 8 bits byte.
itemn means a repetition of times.item n

itemX identify by the letter so that it can be used in the description column.item X

BYTEABYTEBBYTEC represent the unsigned integer value coded on 3 bytes in big endian.

General items

The following items are referenced in the context description tables.

Token name Definition Comments

context-id BYTE Context identifier as a single byte.
This allows up to 256 serialization
contexts

chunked-string (BYTE BYTE BYTElength)*

0x00 0x00

Sequence of 64k maximum data
chunks. The two first bytes gives
the length of the chunk (unsigned
16bits integer). Terminated by a
zero length chunk.

untyped-pair unsigned-or-string #global First token is the key (either string
or unsigned), second is the value

typed-pair unsigned-or-string value First token is the key (either string
or unsigned), second is the value
(actual serialization context
depends on map definition)

Serialization contexts

Each context has an ID to be referenced through the serialization and deserialization process. The context ID is
coded on a byte, thus 256 different contexts can be used. The following contexts are defined and the other IDs are
reserved for future use.

Context 0: Global

Global context allows the definition of nearly any object but is less compact encoding.

Opcode Additional data Comments

0x00 Null

0x01 Boolean true

0x02 Boolean false

0x03-0x23 BYTElength String of 0 to 32 bytes. String length
is OPCODE - 0x03

0x24-0x27 BYTEA (BYTElength) String of 33 to 1056 (33+1023)
bytes. String length is 33 +
(OPCODE - 0x24) * 256 +
BYTEA

0x28 BYTEA BYTEB (BYTE
length) String of 1057 to 66592

(1056+65535) bytes. String length
is 1057 + BYTEABYTEB

0x29 chunked-string Arbitrary long string spitted in
chunks

 Lists

0x2A Empty list

0x2B-0x33 #globallength List of 1 to 9 untyped objects. List
length is OPCODE - 0x2B + 1

0x34 unsigned-or-string (#global
length)

List of 10 or more untyped objects.
List length is unsigned-or-stri

 ng + 10

0x35 #global* 0x00 List of untyped objects with
unknown length. Terminated with
the global token#null

0x36-0x3E context-id (valuelength) List of 1 to 9 typed objects. Objects
are then serialized within given cont

. List length is ext-id OPCODE -

0x36 + 1

0x3F unsigned-or-string context-
 id (valuelength)

List of 10 or more typed objects.
Objects are then serialized within
given . List length is context-id unsi

 gned-or-string + 10

0x40 context-id value* #null List of typed objects with unknown
length. Objects are then serialized
within given and list iscontext-id
terminated with the token of#null
the same context.

 Maps

0x41 Empty map

0x42-0x4A untyped-pairlength Map of 1 to 9 untyped pairs. Map
length is OPCODE - 0x42 + 1

0x4B unsigned-or-string (untyped
-pairlength)

Map of 10 or more untyped pairs.
Map length is unsigned-or-stri

 ng + 10

0x4C untyped-pair* 0x00 Map of untyped pairs with unknown
length. Terminated with the
Unsigned or String token#null

0x4D-0x55 context-id (typed-pairlength

)

Map of 1 to 9 typed pairs. Pair
values are then serialized within
given . Map length is context-id OPC

ODE - 0x4D + 1

0x56 unsigned-or-string context-
 id (typed-pairlength)

Map of 10 or more typed pairs. Pair
values are then serialized within
given . Map length is context-id uns

 igned-or-string + 10

0x57 context-id typed-pair* 0x00 Map of typed objects with unknown
length. Objects are then serialized
within given and map iscontext-id
terminated with the Unsigned or
String token.#null

 Classes & Objects

0x60-0x6F value* Object instance shortcut for class ID
from 0 to 15. Class ID is OPCODE -

. Field values must be given in0x60

the same order and the same
context than in class definition.

0x70 unsigned-or-string value* Object instance. Class ID is unsigne
 + 16. Field values mustd-or-string

be given in the same order and the
same context than in class
definition.

0x71 unsigned-or-string unsigned
 -or-string unsigned-or-stri

 ng (unsigned-or-string cont

ext-id)length

Full class definition. Tokens have
the following meaning:

1st : uniqueunsigned-or-string
class identifier (unsigned)
2nd : classunsigned-or-string
name (string)
3rd : length ofunsigned-or-string
field list (unsigned)
unsigned-or-string paircontext-id
s: class fields (name (string) and
corresponding context)

0x72 unsigned-or-string unsigned
 -or-string context-idlength

Short class definition. Tokens have
the following meaning:

1st : uniqueunsigned-or-string
class identifier (unsigned)
2nd : length ofunsigned-or-string
field list (unsigned)
context-id list: class fields
contexts

 Numbers

0x80-0xDF Tiny integer from -31 to 64. Value is
 (0 is)OPCODE - (0x80+31) 0x9F

0xE0-0xEF BYTE Small integer (12 bits) with MSB as
sign bit. Possible range is from
-2079 (
-2048-31) to 2112 (2048+64). The
value is:

For opcodes from to : 0xE0 0xE7

((OPCODE - 0xE0) << 8) +
BYTE + 65
For opcodes from to : 0xE8 0xEF

-1*(((OPCODE - 0xE8) <<
8) + BYTE) - 32

0xF0-0xF7 BYTEA BYTEB Medium integer (19 bits) with MSB
as sign bit. Possible range is from
-264223 (
-(1<<18)-2079) to 264256
((1<<18)+2112). The value is:

For opcodes from to : 0xF0 0xF3

((OPCODE - 0xF0) << 16) +

 BYTEABYTEB + 2113

For opcodes from to : 0xF4 0xF7

-1*(((OPCODE - 0xF4) <<
16) + BYTEABYTEB) - 2080

0xF8-0xFB BYTEA BYTEB BYTEC Large integer (26 bits) with MSB as
sign bit. Possible range is from
-33818655 (
-(1<<25)-264223) to 33818688
((1<<25)+264256). The value is:

For opcodes and : 0xF8 0xF9 ((

OPCODE - 0xF8) << 24) +

 BYTEABYTEBBYTEC + 264257

For opcodes and : 0xFA 0xFB -1

*(((OPCODE - 0xFA) << 24)
+ BYTEABYTEBBYTEC) -

264224

0xFC int32 32 bits signed integer.

0xFD int64 64 bits signed integer.

0xFE float32 IEEE 754 single precision float.

0xFF float64 IEEE 754 double precision float.

Free opcodes (21):

0x58-0x5F (8 opcodes)
0x73-0x7F (13 opcodes)

Context 1: Unsigned Integers and Strings (UIS)

Context used to encode unsigned numbers and strings. Mainly used for map keys.

Opcode Additional data Comments

0x00 Null

0x01-0x30 BYTElength String of 0 to 47 bytes. String length
is OPCODE - 0x01

0x31-0x38 BYTEA (BYTElength) String of 48 to 2095 (48+2047)
bytes. String length is 48 +
(OPCODE - 0x31) * 256 +
BYTEA

0x39 BYTEA BYTEB (BYTE
length) String of 2096 to 67631

(2096+65535) bytes. String length
is 2095 + BYTEABYTEB

0x3A chunked-string Arbitrary long string spitted in
chunks

0x3B-0xC6 Tiny unsigned integer from 0 to 139.
Value is OPCODE - 0x3B

0xC7-0xE6 BYTEA Small unsigned integer from 140 to
8331. Value is 140 + (OPCODE -
0xC7) * 256 + BYTEA

0xE7-0xF6 BYTEA BYTEB Medium unsigned integer from 8332
to 1056907 (1048575+8332). Value
is 8332 + (OPCODE - 0xE7) *
65536 + BYTEABYTEB

0xF7-0xFE BYTEA BYTEB BYTEC Large unsigned integer from
1056908 to 135274635
(1-(1<<27)+1056908). Value is 105
6908 + (OPCODE - 0xF7) *
(1<<24) + BYTEABYTEBBYTEC

0xFF uint32 32 bits unsigned integer

No free opcodes.

Context 2: Numbers

Context specialized to define numbers efficiently.

Opcode Additional data Comments

0x00 Null

0x01-0xC3 Tiny integer from -97 to 97. Value is
 (0 is)OPCODE - (0x01+97) 0x62

0xC4-0xE3 BYTEA Small integer (13 bits) with MSB as
sign bit. Possible range is from
-4193 (-(1<<12)-97) to 4193
((1<<12)+97). The value is:

For opcodes from to : 0xC4 0xD3

((OPCODE - 0xC4) << 8) +

 BYTEA + 98

For opcodes from to : 0xD4 0xE3

-1*(((OPCODE - 0xD4) <<
8) + BYTEA) - 98

0xE4-0xF3 BYTEA BYTEB Medium integer (20 bits) integer the
MSB as sign bit. Possible range is
from -528481 (-(1<<19)-4193) to
528481 ((1<<19)+4193). The value
is:

For opcodes from to : 0xE4 0xEB

((OPCODE - 0xE4) << 16) +

 BYTEABYTEB + 4194

For opcodes from to : 0xEC 0xF3

-1*(((OPCODE - 0xEC) <<
16) + BYTEABYTEB) - 4194

0xF4-0xFB BYTEA BYTEB BYTEC Large integer (27 bits) with MSB as
sign bit. Possible range is from
-67637345 (-(1<<26)-528481) to
67637345 ((1<<26)+528481). The
value is:

For opcodes from to : 0xF4 0xF7

((OPCODE - 0xF4) << 24) +

 BYTEABYTEBBYTEC + 528481

For opcodes from to : 0xF8 0xFB

-1*(((OPCODE - 0xF8) <<
24) + BYTEABYTEBBYTEC) -

528481

0xFC int32 32 bits signed integer.

0xFD int64 64 bits signed integer.

0xFE float32 IEEE 754 single precision float.

0xFF float64 IEEE 754 double precision float

No free opcodes.

Context 3: 4 bytes signed integer only (Int32)

Context specialized to encode 32 bits integers. Elements are 4-bytes integers except for which is a0x80000000

special token followed by a single byte:

0x00 for the token (so the entire null token is)#null 0x8000000000

0x01 for the value normally represented by (-2147483648)0x80000000

Context 4: 4 bytes floating numbers only (Float)

Context specialized to encode 32 bits floats. Elements are single precision floats except for which is a0xFFFFFFFF

special token followed by a single byte:

0x00 for the token (so the entire null token is)#null 0xFFFFFFFF00

0x01 for the value normally represented by (Quiet -NaN)0xFFFFFFFF

Context 5: 8 bytes floating numbers only (Double)

Context specialized to encode 64 bits floats. Elements are double precision floats except for 0xFFFFFFFFFFFFFFF
 which is a special token followed by a single byte:F

0x00 for the token (so the entire null token is)#null 0xFFFFFFFFFFFFFFFF00

0x01 for the value normally represented by (Quiet -NaN)0xFFFFFFFFFFFFFFFF

Context 6: Lists & Maps

Opcode Additional data Comments

0x00 Null

 Lists

0x01 Empty list

0x02-0x3D #globallength List of 1 to 60 untyped objects. List
length is OPCODE - 0x02 + 1

0x3E unsigned-or-string (#global
length)

List of 61 or more untyped objects.
List length is unsigned-or-stri

 ng + 61

0x3F #global* 0x00 List of untyped objects with
unknown length. Terminated with
the global token#null

0x40-0x7B context-id (valuelength) List of 1 to 60 typed objects.
Objects are then serialized within
given . List length is context-id OPCO

DE - 0x40 + 1

0x7C unsigned-or-string context-
 id (valuelength)

List of 61 or more typed objects.
Objects are then serialized within
given . List length is context-id unsi

 gned-or-string + 61

0x7D context-id value* #null List of typed objects with unknown
length. Objects are then serialized
within given and list iscontext-id
terminated with the token of#null
the same context.

 Maps

0x83 Empty map

0x84-0xBF untyped-pairlength Map of 1 to 60 untyped pairs. Map
length is OPCODE - 0x84 + 1

0xC0 unsigned-or-string (untyped
-pairlength)

Map of 61 or more untyped pairs.
Map length is unsigned-or-stri

 ng + 61

0xC1 untyped-pair* 0x00 Map of untyped pairs with unknown
length. Terminated with the
Unsigned or String token#null

0xC2-0xFD context-id (typed-pairlength

)

Map of 1 to 60 typed pairs. Pair
values are then serialized within
given . Map length is context-id OPC

ODE - 0xC2 + 1

0xFE unsigned-or-string context-
 id (typed-pairlength)

Map of 61 or more typed pairs. Pair
values are then serialized within
given . Map length is context-id uns

 igned-or-string + 61

0xFF context-id typed-pair* 0x00 Map of typed objects with unknown
length. Objects are then serialized
within given and map iscontext-id
terminated with the Unsigned or
String token.#null

5 free opcodes ().0x7E-0x82

	Bysant Serializer

