
 Concordia University 1

Report on How to Use
ALF Action Language and fUML

execution/debugging with Moka
Coen 6312-Model Driven Software Engineering

SAEED SHOARAYE NEJATI (40044525)

Matin Maleki (40043676)

 2

Table of Contents
Overview .. 5

Preparing Steps for Papyrus ... 6

Installing ALF and ALF Extension for Eclipse Oxygen PAPYRUS: ... 6

Installing Moka and Nebula updates: .. 8

Getting Started with Model Execution ... 10
Import a basic sample of fUML with Moka to start with .. 10

ALF based Model Execution .. 19
ALF based behavior as part of diagram: ... 19

Conclusion ... 30

 3

Table of Figures

Figure 1- ALF installation for papyrus ... 6

Figure 2 - Integrated ALF Editor inside Papyrus additional Components ... 7

Figure 3 - Enable ALF Support for Founational UML .. 7

Figure 4 - Get Nebula Updates ... 8

Figure 5 - Moka core for execution and debugging models .. 8

Figure 6 - Basic sample of fUML in Moka .. 9

Figure 7 - Create new project with the name of ALF_Papyrus .. 10

Figure 8 - Import downloaded sample into the environment ... 10

Figure 9 - First view of the imported project ... 11

Figure 10 - Increment Class Diagram in Project .. 11

Figure 11 - Increment method in the behaviors .. 12

Figure 12 - Increment classifier behavior .. 12

Figure 13 - Generate factory for Increment Class Behavior .. 13

Figure 14 - Moka preferences for run and debug ... 13

Figure 15 - Run Project in debug mode .. 14

Figure 16 - Debug configuration and add Moka Configs ... 14

Figure 17 - Steps to intial configurations for Moka .. 15

Figure 18 – set element for execution of Model .. 15

Figure 19 - Debugging environment in the eclipse ... 16

Figure 20 - Debugging a Model in eclipse ... 16

Figure 21 - Possibility to add breakpoint and see the simulation of the execution for model 17

Figure 22 - Adding Breakpoint in each step to check the object instance values of the class 17

Figure 23 - read values of the attributes inside the class in the variables window 18

 4

Figure 24 - All executed with models and nothing textual for actions ... 18

Figure 25 - Add new operation to the class from palette .. 19

Figure 26 - Add activity to the existing class .. 19

Figure 27 – Multiply Method as a behavior added to the class .. 20

Figure 28 - ALF editor inside the eclipse to create behavior ... 20

Figure 29 - Compile and Generate behaviors for multiplyMethod Behavior 22

Figure 30 - Drag MultiplyMethod from Model Explorer inside the increment Method as
CallBehaviorAction .. 23

Figure 31 - As you can see the result is our method with two input and one output as we wrote in
ALF ... 23

Figure 32 - Add value Specification Action to set the inputs of the MultiplyMethod 24

Figure 33 - Add Literal Integer value equal 2 as second input for Behavior 24

Figure 34 - set the value equal 2 to provide the right input for your method 25

Figure 35 - Object Flow edge to connect result of value two to input y ... 25

Figure 36 - Object flow from the result of the callMultiplyMethod to the Value of set Counter ... 26

Figure 37 - Final Modified Diagram with the added ALF part .. 26

Figure 38 - Add Breakpoints to Debug and see the values inside the model 27

Figure 39 - In the first run value of the counter is zero ... 27

Figure 40 - Simply hit resume to continue running the diagram .. 28

Figure 41 - Second run the value will show the result of two ... 28

Figure 42 - in the third run value will show the 6 as result ... 29

Figure 43 - Final representation of two different behaviors in the model ... 30

Figure 44 - Increment method based on the fUML without textual actions 31

Figure 45 - Added ALF based action for Multiply Method ... 31

 5

Overview

In this report, we tried to implement part of the executable model in fUML with Action Language
(ALF). This report is based on Eclipse Oxygen and Papyrus Modeling environment and the process
of installation and execution of ALF action language in this environment.

First, we introduce how to Integrate ALF editor in this environment and then we try to add Moka
for the purposes of debugging and execution models. At the end, we provide a new sample
based on the fUML sample of the Moka for execution of the models to show how we can execute
ALF based behaviors inside the modeling environment.

Since ALF is supported from the OMG standardization as an action language we started to find
out supported tools and modeling environments to use. But the main problem was out dated
samples and tutorials to use this important issue in modeling environments. This report is the
documentation of how to use ALF language with the help of debugging fUML models in the
papyrus environment.

We start this tutorial based on what is existed for running fUML in the Moka without textual action
language and the we add our ALF based actions to the diagram.

 6

Preparing Steps for Papyrus

Installing ALF Extension for Eclipse Oxygen:

1. Click on “help”, “install new software” then add the link below and install all ALF plug-ins
on your Eclipse. The address for the update the sources.
- web address: Oxygen - http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/oxygen/

Figure 1- ALF installation for papyrus

2. From top toolbar select “help” then “Eclipse MarketPlace”, search ALF and install
“Integrated ALF Editor”.

 7

Figure 2 - Integrated ALF Editor inside Papyrus additional Components

3. From top toolbar on “preference” search ALF and active all Supports for it.

Figure 3 - Enable ALF Support for Founational UML

 8

Installing Moka and Nebula updates:
1. On “help”, “install new software” add this link below and install all Nebula.

Figure 4 - Get Nebula Updates

2. On “help”, “install new software” add this link below and install all Moka cores.

Figure 5 - Moka core for execution and debugging models

 9

3. download the basic sample of project use the link below and save it on your system.
- web address: https://wiki.eclipse.org/File:BasicActiveObjectExample.zip

Figure 6 - Basic sample of fUML in Moka

 10

Getting Started with Model Execution
Import a basic sample of fUML with Moka to start with

1. we will make a new papyrus project then import the sample project (that we download
it before). We called the project “ALF_PAPYRUS”.

Figure 7 - Create new project with the name of ALF_Papyrus

Figure 8 - Import downloaded sample into the environment

 11

2. when you open the project, you should have all these diagrams attached to it.

Figure 9 - First view of the imported project

Figure 10 - Increment Class Diagram in Project

 12

Figure 11 - Increment method in the behaviors

Figure 12 - Increment classifier behavior

 13

3. The behaviors associated with this class (i.e., IncrementClassifierBehavior, which is the classifier
behavior, and incrementMethod, are the implementations of operation increment) are
specified by activity diagrams. Corresponding activities are executable, according to the
semantics given in OMG standards fUML and PSCS. Anyway, in fUML and PSCS, the execution
of a model usually starts by executing a kind of "main" activity, which is responsible for
instantiating objects, and stimulate them if needed (through signals or operation calls). Moka
provides some facilities to generate this kind of activities. Just right click on class Increment,
then go to Moka - Modeling Utils - Generate Factory.

Figure 13 - Generate factory for Increment Class Behavior

4. You should also check the execution engine from “preferences”.

Figure 14 - Moka preferences for run and debug

 14

5. After checking the engine, hit “Debug Configurations…” and add new configuration as
below.

Figure 15 - Run Project in debug mode

Figure 16 - Debug configuration and add Moka Configs

 15

Figure 17 - Steps to intial configurations for Moka

Figure 18 – set element for execution of Model

 16

6. Start debugging by click on Debug icon on up-right side of screen.

Figure 19 - Debugging environment in the eclipse

7. You will see the debug start when the action diagram becomes green

Figure 20 - Debugging a Model in eclipse

 17

Figure 21 - Possibility to add breakpoint and see the simulation of the execution for model

8. By Adding breakpoints in different steps, you can monitor your debugging completely.

Figure 22 - Adding Breakpoint in each step to check the object instance values of the class

 18

9. As you see in the pictures, counter will be increase each time the cycle finishes.

Figure 23 - read values of the attributes inside the class in the variables window

10. As you see in this photo, there is no command in ALF part, because here we only use Moka
to execute this project. Next step we will add another method and write the ALF codes in
it.

Figure 24 - All executed with models and nothing textual for actions

 19

ALF based Model Execution
ALF based behavior as part of diagram:

1. In the Class diagram add an operation and call it Multiply

Figure 25 - Add new operation to the class from palette

2. In Model Explorer, right click on Increment and add new activity behavior call it
“MultiplyMethod”

Figure 26 - Add activity to the existing class

 20

Figure 27 – Multiply Method as a behavior added to the class

3. As you see, you will have this class diagram and model Explorer. If you click on
MultiplyMethod, it is ready to add your behavior with ALF language.

Figure 28 - ALF editor inside the eclipse to create behavior

 21

4. Write ALF codes same as below in “ALF properties” for “MultiplyMethod”

Sample ALF method for to input x and y and prepare the result by returning x multiply by y.

Sample Code:

namespace BasicActiveObjectExample::Increment;

activity multiplyMethod(in x:Integer, in y:Integer):Integer {
 return x*y;
}

5. You will have these codes under the “multiplymethod” same as this. Hit Commit. With the
commit button inside the ALF editor these commands will be executed and compiled as
behavioral parts which you can see the next picture. The beauty of this process is all the
generated parts can be used as an action inside another diagram.

We have added the ALF codes but still we do not have the multiplymethod in our Action
diagram. It is possible to Drag and drop the “MultiplyMethod” from Model Explorer to
increment class diagram to add it even inside to diagram.

 22

Figure 29 - Compile and Generate behaviors for multiplyMethod Behavior

6. Now we need to execute our ALF part in the previous fUML we tested and debugged in
the previous section.

 23

7. Choose “Activity as a CallBehaviorAction” second item from the menu.

Figure 30 - Drag MultiplyMethod from Model Explorer inside the increment Method as CallBehaviorAction

Figure 31 - As you can see the result is our method with two input and one output as we wrote in ALF

 24

8. To test the “MultiplyMethod” we will add a constant value (equal to 2) and get the
output of incrementing. So, each time we will multiply the increment output.

Figure 32 - Add value Specification Action to set the inputs of the MultiplyMethod

Figure 33 - Add Literal Integer value equal 2 as second input for Behavior

 25

Figure 34 - set the value equal 2 to provide the right input for your method

Figure 35 - Object Flow edge to connect result of value two to input y

 26

Figure 36 - Object flow from the result of the callMultiplyMethod to the Value of set Counter

Figure 37 - Final Modified Diagram with the added ALF part

 27

Figure 38 - Add Breakpoints to Debug and see the values inside the model

9. When you run the debug, counter is zero and each time it will first increment by 1 and
multiply by 2. First step counter is zero.

Figure 39 - In the first run value of the counter is zero

 28

Figure 40 - Simply hit resume to continue running the diagram

10. Second step 0 will increment by1 then multiply by 2. counter: (0+1) *2=2

Figure 41 - Second run the value will show the result of two

 29

11. Third step. Counter: (2+1) * 2=6

Figure 42 - in the third run value will show the 6 as result

 30

Conclusion

In textual representation of the model, we can see, we have the multiply method as public
which is written by ALF and there is no difference in the execution between ALF parts and fUML
with Moka.

Figure 43 - Final representation of two different behaviors in the model

Next two pictures clearly show that “incrementMethod” which is in Moka has not the ALF
commands and “MultiplyMethod” which is written in ALF has the commands and they are
working together properly.

• “incrementMethod” which is implemented with fUML and actions inside model.

 31

Figure 44 - Increment method based on the fUML without textual actions

• “MultiplyMethod” which is added with ALF action language and compiled as a part of
the model execution in the behavior.

Figure 45 - Added ALF based action for Multiply Method

