The Eclipse Way

Szymon Brandys Pawel Pogorzelski Tomasz Zarna

Platform Workspace Team
IBM Poland

2009-06-27

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

0 What Is Eclipse

e Growth Path

e How We Are Organized

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

What Is Eclipse How We Got Here
Eclipse Architecture
Eclipse Based Products

How We Got Here

@ Java strategic technology for IBM
@ Need to compete with MS VS and other Java IDE

@ Created in 1998 by IBM/OTI teams responsible for VisualAge
product family

@ In 2001 given opened to open source to increase exposure and
accelerate adoption

In 2004 Eclipse Foundation was created

Eclipse already well regarded tooling platform

In mid 2004 Eclipse 3.0 ships, now based on OSGi
Eclipse becomes more and more an RCP platform

Thousands of Eclipse based products on the market, from ST to
fully loaded IDEs

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

What Is Eclipse How We Got Here

Eclipse Architecture
Eclipse Based Products

Eclipse Architecture

‘ Rich Client Application ‘ ‘ Other Taols ‘

3

v]

‘ Help

Update‘ Text |

Eclipse RCP

o

Runtime JFace

OSGi SWT

J2SE1.4

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-!

What Is Eclipse How We Got Here
Eclipse Architecture
Eclipse Based Products

Eclipse 3.5

& Java - org.edipse.core.net/src/org/ eclipse/coreintemal/net/ Proxytanager.java - Eclipse

Fie Refactor Navigate Search Project Run Window Help
Jrirt @@ | 3s-0-%- | BB | @ &~ §% I5 (1 | &= &= ER R
- = - e =
£ Packace Explorer £ _Ju it]
package

Fimport iava.

erenc

What Is Eclipse How We Got Hi
Eclipse Architecture
Eclipse Based Products

IBM Rational Software Architect 7.0.0

[ri- @ %00 2|85l -

IBM Rational Software Delivery Pla

Version 7.0

1) swingutlsavs 1

The Ecl ts reserved. | 2009

What Is Eclipse How We Got

IBM Lotus Notes 8

2 | Tomasz zama
— |l onLacal
&

£ Inbox

| Drafts
=T gent

= Follow Up

(5] All Documents
L2 Junk (7)

|| Tl Trash

Chat History

Telviews

_ | liEiFolders

[injeclipse (89)
HR
G
n Sle)
= = 1T8AS
A
o || EoiArchive
< Tools

tus Notes

Actions

Tools indow Help

Bl ¥ New - j=1 Reply + &l Replyto All » (2 Forward +

The Ecl

Eclipse Architecture
Eclipse Based Products

) 1Sender > Subject
~ Normal
)|) Pawel Pogorzelsk EclipselnkSL_4Erlc_20090515 ppt

= v B~ [More - {2

@ Damian Nawrocki Re: Konfiguracja kont dla TADDMa na serwerach projekiu B

&
a Pawel Pogorzelsk

& lacek Suchenia

& Etic van der Schilc

3 E
&

) el Pogorzelsk
& el Gacel k
& © Lukasz Baratowic K
& @ Martin Paluch [
& @ Damian Nawrocki

& o Lukasz Baratowic

=

EclipselnKSL_4E{~
@ Pawel Pogorzel

et et LOtUS. Notes.8

ts reserved. | 2009

What Is Eclipse How We Got Here
vth Path Eclipse Architecture
nized Eclipse Based Products

Tivoli® Common Agent Services

herense:/opt/tivolisep/runtine/agent I ./agentcli.ch deployer list hundles state

Active

Systen Bundle
initialCreference:file:plugins/ory.eclipse.core.runtime_3.1.2. jar/
initialPreference:file:plugins/ory.eclipse.update.conf igurator 3.1.8. jar/
initialBreference:file:pluging/com. ihm.yue.vct . platforn.autostart_f.1.0.0-20068281 . jar/
updatefplugins/org.eclipse.core . punt ime.compatihilicy_3.1.6. jar
updatelplugins/org.eclipse.osyi.cervices_3.1.2. jar
updatedplugins/org.eclipse.osgi.util 3.1.1. jar
updatelplugingory.eclipze .update.core.win3d_3.1.8, jar
updateBpluginz/ory.eclipse .update.core_3.1.1. jar
updatel../. . agent/subagents/ec lipsesplugins/CD8Axis. jar
updatel../. . agent/subagents/eclipsesplugins/CD8C1ientAFIBundle. jar
updateld. ./ ./agent/subagents/ec1ipsesplugins/C05DepotServer. jar
updateld. .. ./agent/subagents/eclipsepluging /COP-Commonfgent-TPH. jar
updatel../. . agent/subagents/eclipse/plugins/CitScannerfigent_linux. jar
updatel../. . agent/subagents/eclipse/plugins/EventAdnin. jar
/. ./agent/subagents/ec 1ipse/plugins/SCHCoL1ec torfigent _linux. jar
/. .sagent/subagents/eclipse/plugins/TPMAgentExt . jar

updatel../.
updated../ .

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

Keeping It Big

How can you build something that can last 10 years and be:
@ Industry leading
@ Extendable
@ Constantly evolving
Well, you need to have those:
@ Modularity
@ Scalability
@ Stable APIs

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

JVM Classloading

Application wide classpath

java -classpath
./a-1.5.0.jar:./b.jar:./c.jar:./a-2.1.0.jar./bin:
com.vendor .App

@ Not possible to use the same library in two versions

@ Classnames conflicts

@ All entries has to be searched which results in performance hit
@ No need to declare dependencies explicitly

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

Classes and charts aren’t enough, you need components. OSGi
provide those in form of bundles:
@ Explicit dependencies managment
e Import-Package: org.osgi.framework;
version=1.2
e Export-Package: org.osgi.service.cm;
version="1.2.1"

@ No sea of classes, no exhibitionism

Application wide classpath
Modularity that OSGi gives enables evolution.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

Declarative extensions

Extension points are the places where you expect functionality to be
extended. Extensions are features that plug-in into extension points.

@ Simple and powerful
@ Don’t load code until it is needed
@ Explicit points where you can plug-in

Lazy loading

Lazy loading given by Extension Registry gives scalability.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

Stable APls

Stable APls are critical to sustain growth. Clients can add features
instead of updating to new API. So, it has to be:

@ Consistent and wise
@ Any decision made today will impact where you can go tommorow

API compatibility is a huge commitment so we take a defensive
approach:

@ Don’t add until there is at least one client
@ Exhibit less rather then more
@ Expose more if needed

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

API| Tension

API needs iteration and clients to work. But we need to have stable
APlIs for widespread adoption. So, we:

@ Develop API and client at the same time
@ Don’t commit API before it’s time
@ API changes within release to accomodate new requirements and
experience
It also gives us early feedback on API violation. Just because it works
doesn’'t mean it's APl compliant.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

API Layers

What if we want add new, more feature rich mechanizm?
@ Add a new functionality
© An API layer that maps the old API to new implementation
© Remove the old implementation
@ Deprecate the old API
@ After a few years we might drop it

Binary compatibility

We tend to have more than stable API. Binary compatibility is what matters
since users will not rebuild a plug-in.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Keeping It Big
Modularity

Declarative Extensions
Stable APIs

Growth Path

APl Tools

API Baseline defines the state you want to compare your development
against. Tools check:

@ Usage problems

@ Binary compatibility

@ Bundle version numbers

@ Maintanance tag @since
Other tags:

@ @noimplement

@ @noinstantiate

@ @noextend
Known problems can be marked appropriately and filtered.
Integration

Tools make API violations are perceived as natural as language constraints.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Planning
Continous Integration
Cycles

How We Are Organized The Community

Planning

@ Comminity input

@ Discuss propositions on bug reports
@ Committed, proposed items

@ We drop items to maintain schedule

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Planning
Continous Integration
Cycles

How We Are Organized The Community

Continous Integration

@ Releases - e.g. R3.4; stable, tested, lack the lates features

@ Stable - e.g. 3.5RC4; latest features, valuable and timely
feedback

@ Integration Builds - e.g. 120090611-1540, run weekly

@ Nightly Builds - e.g. N20090426-1232; often major problems,
useful to Eclipse Project developers

Always beta
We work on nightly builds so we try to keep them running.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Planning
Continous Integration
Cycles

How We Are Organized The Community

Milestones

There is 7 milesontes, each takes 6 weeks

Shipping is hard, that's why we do it 7 times a release
Customers can rebase more frequently

Plan, develop, test, release, retrospective

We play all the roles

New and Noteworthy

o Feed the community
e Make people move to milestone builds
o Fewer completed than more in progress

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Planning
Continous Integration
Cycles

How We Are Organized The Community

The Convergence Process

M6 - API freeze

M7 - feature freeze

RC1 - another commiter, PMC for APl changes
RC2 - two commiters

RC3 - two commiters, compoment lead

RC4 - two compoment leads, any lead can veto

Commiting Into RCs
Release Candidates time is when you never want to have a buildbrake.

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

Planning
Continous Integration
Cycles

How We Are Organized The Community

Community

Inital investment

Community grows and becomes self supporting, we don’t have to
grow

Early feedback
Open technical discussions, even more important than open bugs
Transparency, good for distributed teams

The village effect

The Eclipse Way Copyright (©IBM Corp., 2009. All rights reserved. | 2009-06-18

	What Is Eclipse
	How We Got Here
	Eclipse Architecture
	Eclipse Based Products

	Growth Path
	Keeping It Big
	Modularity
	Declarative Extensions
	Stable APIs

	How We Are Organized
	Planning
	Continous Integration
	Cycles
	The Community

