
What’s New in CDT

Sergey Prigogin

Google

CDT committer, refactoring component lead

Copyright (c) 2012 Google. Made available under the Eclipse Public License v1.0.

Areas of active development

C++11 support

Recently added support for:

using foo = std::array<int, 10>;

constexpr int foo(int a, int b) { return a * b; }

Current state in

http://bugs.eclipse.org/bugs/showdependencytree.cgi?id=395568

Preservation of typedefs

Refactoring

Brief history of refactoring in CDT

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Rename

Toggle Function

Extract Local Variable

Getters and Setters

Hide Method

Implement Method

Extract Constant

Extract Function
Usable at last

What’s next in refactoring?

Organize Includes

oRequired for new refactorings (Inline, Change

Method Signature)

oUseful by itself. Bugzilla enhancement request

was created in 2003 and has 38 comments

What needs to be organized?

Includes

Forward declarations

Using declarations

#include <string>

using std::string;

string concatenate(const string& pieces...);

void main(int argc, const char* argv[]) {

 string s = concatenate(argv[1], argv[2]);

 ...

}

Include vs forward-declare

A foo(A a) { // definition of A is required

 return a;

}

A* bar(A* a) { // definition of A is not required

 return a;

}

void baz(A* a) {

 a->f(); // definition of A is required

}

class C {

 D x; // definition of D is required

 static E y; // definition of E is not required

};

MyString.h

class MyString {

public:

 MyString(const char* s);

};

Compare.h

class MyString; // is forward declaration enough?

int compare(const MyString& s1, const MyString& s2);

main.cpp

#include "Compare.h"

int main(int argc, const char* argv[]) {

 return compare(argv[1], argv[2]);

}

Who is responsible for inclusion?

Font.h

enum Font { TIMES_ROMAN, HELVETICA };

Graphics.h

#include "Font.h"

void drawLine(int x1, int y1, int x2, int y2);

void setFont(Font font);

main.cpp

#include "Graphics.h"

void main() {

 drawLine(0, 0, 1, 1);

 Font f = TIMES_ROMAN;

 ...

}

Indirect inclusion

More about indirect inclusion

Include What You Use principle

Representative header files

o <vector>, not <bits/stl_vector.h>

oNULL is defined in 13 headers

Private and public headers

component/*.h can be included from

anywhere

component/internal/*.h can be included only

from component/*.* and component/internal/*.*

Flavors of include statements

Angle brackets or quotes

#include <vector>

#include "my_vector"

Short or long path

#include "point.h"

#include "graphics/primitives/point.h"

Grouping and ordering of includes

With the same name but different extension

In the same folder

In subfolders

“System” includes

User-defined groups

/MyProject/src/time/DateTime.cpp

#include "time/DateTime.h"

#include <sys/time.h>

#include <time.h>

#include <cstdio>

#include <string>

#include "time/Duration.h"

#include "time/timezone/TimeZone.h"

#include "base/Types.h"

#include "strings/Format.h"

#include "util/Logging.h"

...

Grouping example

Preferences, preferences, preferences…

Inclusion vs forward declaration

Header file substitution

Style of include statements

Grouping and ordering

What to do with unused includes

Demo

