
Advanced C/C++
Debugging (CDT project)

Tracing (Linux Tools PROJECT)

Dominique dot toupin at
ericsson dot com

FULL open source solution
› Eclipse CDT
› Eclipse Linux Tools
› GDB
› LTTng
› Linux

© Ericsson | Eclipse Summit 2010

Reverse debugging

› Allows to undo register and memory changes so as to
move the execution backwards

› Uses recording and playback

Buttons to control
reverse execution Start recording

and display
execution buttons

© Ericsson | Eclipse Summit 2010

Multi core-process-context
http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup

› More execution in parallel in many processes
› Debugging related processes at the same time
› Dynamically attach and detach from processes
› Follow child process created with a fork, exec,
› Global Breakpoint, many processes can execute the same code,

auto attached to the process only when the breakpoint is hit, also
usefull for short lived-process

› Core awareness, threads are running on which cores

Cores are shown
for both threads
and processes

› More execution in parallel in many processes
› Debugging related processes at the same time
› Dynamically attach and detach from processes
› Follow child process created with a fork, exec,
› Global Breakpoint, many processes can execute the same code,

auto attached to the process only when the breakpoint is hit, also
usefull for short lived-process

› Core awareness, threads are running on which cores

› More execution in parallel in many processes
› Debugging related processes at the same time
› Dynamically attach and detach from processes
› Follow child process created with a fork, exec,
› Global Breakpoint, many processes can execute the same code,

auto attached to the process only when the breakpoint is hit, also
usefull for short lived-process

› Core awareness, threads are running on which cores

© Ericsson | Eclipse Summit 2010

© Ericsson | Eclipse Summit 2010

Special breakpoints

› Conditional Breakpoint
– Stop only if the condition is true.
– C assert condition, break when assertion is false

› Data Breakpoint or Watchpoint
– Stop whenever the value of an expression change
– Don't have to predict where this may happen
– Can be a complex expression or just a single variable

› Program event breakpoint
– Stop when a special event occurs
– Throwing/catching C++ exception,
– unhandled exception
– call to exec, fork, syscal

● Display and editing of complex objects like Lists, Maps, Vectors

Complex structures shown in
an intuitive way and editable

● Some programs have a deep interaction with OS resources DSF-
GDB can show: process groups, file descriptors, internet-domain
sockets, shared memory segments, semaphore, message
queues, loaded kernel modules, etc.

© Ericsson | Eclipse Summit 2010

Non-STOP

› Debugging a process by stopping its execution might cause
the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.

– Troubleshooting in the lab
– Chasing a race condition
– Debugging problems happening only under heavy load
– Investigating user interface issues

› Non-Stop allows to stop and examine one or more thread in
the debugger while other threads continue to execute freely

© Ericsson | Eclipse Summit 2010

Dynamic Tracepoints

› Tracepoint collects user-specified info and continues execution without
stopping any thread, essential for live sites

› Dynamic i.e. inserted with a jump (in process) or a trap
› Data collection can be conditional to a user specified expression

› Tracepoint actions:
– collect state trace data e.g. timestamp, and program data e.g. variables, register
– evaluate expressions , e.g. modify trace variables
– step (similar to breakpoint step) and collect data in each step

› A trace experiment can be stopped after the n'th hit
› Static tracepoint (LTTng UST) can be stored in the debug tracepoint buffer
› Debug tracepoint are good when no static tracepoint are available and for

small quantity of data

© Ericsson | Eclipse Summit 2010

Dynamic Tracepoints Visualization

› Intuitive display using debugger views

Line where trace
 was collected

Tracepoint that
collected data

Collected data

© Ericsson | Eclipse Summit 2010

TRacing

› Need to understand what is going on in a system without causing
disturbance? → Tracing is for you

› Compared to logging, tracing typically records lower-level events
that occurs much more frequently

› Tracers are therefore optimized to handle a lot of data while having a
small impact on the system

› Static Tracepoint
– created by designer before compilation
– represent wisdom of developers who are most familiar with the code
– The rest of the world can use static tracepoint to extract a great deal

of useful information without having to know the code

© Ericsson | LinuxCon Tracing Mini-Summit 2010

© Ericsson | LinuxCon Tracing Mini-Summit 2010

LTTng Perspective

© Ericsson | LinuxCon Tracing Mini-Summit 2010

LTTng Histogram, Statistics

© Ericsson | LinuxCon Tracing Mini-Summit 2010

LTTng Control Flow, Resources

© Ericsson | LinuxCon Tracing Mini-Summit 2010

Upcoming Features

› General
– Tracing tool control
– Trace streaming
– Heterogeneous traces
– GDB Tracepoints
– Source lookup
– Performance tuning

› Analyses
– Time correction (traces synchronization)

› Multi-core, multi-level, multi-node
– Timing dependencies (between processes)
– Latency Analysis
– Pattern matching (security e.g. intrusion detection)

› Other trace format
– Linux User Space Tracing
– Text format
– De-facto standard format Multi-core

association, Embedded Linux Forum, Samsung,
Ericsson, Mentor Graphic, WindRiver, IBM, Freescale,
TI, Nokia-Siemens Network, National Instruments, etc.
www.multicore-association.org/workgroup/tiwg.php
Common Trace Format Requirement:
http://lwn.net/Articles/408824/
Common Trace Format Implementation:
http://lwn.net/Articles/408825/

© Ericsson | LinuxCon Tracing Mini-Summit 2010

TMF

TMF – Architecture

View A

Analysis W

View B View C

View D
Request/Event Handler

Experiment

Analysis ZTrace 1 Trace 2

A
na

ly
si

s
X

External
Component

External
Component

A
n aly sis Y

© Ericsson | LinuxCon Tracing Mini-Summit 2010

TMF

LTTng – TMF Integration

ControlFlow
View

Resources
View

Statistics
View

Kernel State
System

Events
View

Histogram
View

Trace
Parsing

Lib

Experiment/
Traceset

Trace nTrace 1 Project
View

Some other
Analysis Tool

Some other
View

JN
I

© Ericsson | Eclipse Summit 2010

Additional Online Resources

› Eclipse CDT DSF-GBD lead: marc DOT khouzam AT ericsson DOT com
cdt-dev@eclipse.org

› CDT Multi-core debugging http://wiki.eclipse.org/CDT/designs/MultiCoreDebug,
http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup, http://wiki.eclipse.org/PinAndClone

› http://gcc.gnu.org/wiki/summit2010
› Advanced Tracing Features using GDB and LTTng, Real-time debugging using GDB

Tracepoints, GDB Tracepoints: From Prototype to Production
› http://gcc.gnu.org/wiki/HomePage?action=AttachFile&do=get&target=2009-GCC-Summ

Using Eclipse for Reverse, Multi-Process and Non-Stop Debugging with GDB p.65,
GDB Tracepoints, Redux p.105, Hybrid multi-architecture debugging with GDB p.137

› http://www.gccsummit.org/2008/gcc-2008-proceedings.pdf Non-stop Multi-Threaded
Debugging in GDB p.117

› Eclipse LTTng plug-in lead: francois DOT chouinard AT ericsson DOT com
linuxtools-dev@eclipse.org

› http://www.eclipse.org/linuxtools/projectPages/lttng
› http://www.lttng.org, http://lttng.org/content/success-stories

›

Advanced C/C++
Debugging (CDT project)

Tracing (Linux Tools PROJECT)

Dominique dot toupin at
ericsson dot com

