
CHESS

Composition with Guarantees for High-integrity

Embedded Software Components Assembly

 ARTEMIS JU Project

Silvia Mazzini

 Intecs

Credits to University of Padua

CHESS Project

ARTEMIS JU project
Call 1 2008

Technical Coordinator Intecs

Partners 18

Countries 6

Start February 1st, 2009

Duration 3 Years

2

CHESS Partners

 Industrial Partners

 Intecs (I)

 Italcertifer (I)

 Thales Alenia Space (F)

 Thales Communications
(F)

 Aonix (F)

 GMV (E)

 Atos Origin (E)

 Aicas (D)

 X/Open Company Limited-
The Open Group (UK)

 Ericsson (SW)

 Enea (SW)

 Research Centres

 CNR/ISTI (I)

 INRIA (F)

 Fraunhofer ESK (D)

 Forschungszentrum
Informatik FZI (D)

 Universities

 University of Padua (I)

 Universitad Politecnica de
Madrid (E)

 Maelardalen University
(SW)

 University of Florence (I)
(as subcontractor of
ISTI/CNR)

3

CHESS objectives

 Definition of a Multi-Concern Component Methodology
and Toolset

 Provide a Multi-Concern Component Modeling Language
and a Graphical Modelling Environment that fits multiple
industrial domains

 Enable the specification of functional and extra-functional*
properties of software components

 Integrate tools for the verification of extra-functional
properties

 Preserve verified properties at code level and run time

 Adaptation of standards and open sources

 OMG modeling languages

 Eclipse Environment

 Validation through multi-domain industrial case studies

4

*Extra-functional is a synonym of non-functional, as non-functional may have
connotations of not functioning

Extra-functional properties and
Analyses

 Focus is on
 clearly and cleanly separating the extra-functional part of a

software component from its functional part

 ensuring that extra-functional properties are asserted and
validated at model level and then preserved at code level
and run time

 Extra-functional dimensions and analysis methods of
interest
 Real-Time

• Scheduling Analysis, Bus Configuration Analysis,
Simulation Based Timing Analysis, Code and Execution
Analysis

 Dependability/Safety

• FTA, FMECA, FMEA, State-Based, Wide Data-flow&Call-
graph and Failure Propagation Analysis

5

The CHESS approach 1/2

6

The CHESS approach 2/2

 Model-driven engineering

 Models as the central development artifacts

 Tool assisted automated development

 Component based development

 Specialized to capture the extra-functional properties of components
 Real Time

 Dependability

 Separation of concerns

 Functional vs extra-functional

 Among extra-functional dimensions (dependability vs predictability)

 Among design levels/roles

 Correctness by construction

 Extra-functional properties are:
• asserted and verified at design time

• Preserved/guaranteed at code level and run time

7

The Component Model

 Component

 Reusable functional unit

 Container and Connector

 Encapsulation of the extra-functional properties of
components

 Factorized implementation

 Composability
 properties of individual components are preserved on component

composition

 Compositionality
 properties of the system as a whole can be derived as a function of

the properties of components

Component

A

Component

A

Container AContainer A

Component

B

Component

B

Container BContainer B

Connector ABConnector AB

8

Separation of concerns with the
CHESS component model

Component

A

Container A

Component

A

Container A

Component

B

Container B

Connector AB

Container - Wrapper responsible for the declared extra-

functional attributes

- Provides the component with a mediated

connection with the execution platform and the

system in general

Connector

- Addresses interaction concerns

- Decouples the component from the other end-point(s) of a communication

- Realizes connection properties (best-effort, at most once, exactly once)

- E.g. procedure/function call, remote message passing, I/O file operation, …

9

The CHESS high level design process

Platform
description

Deployment
information

PSM

Design space

Implementation/
analysis space

1a. You construct a PIM to specify your functional solution
to your problem, independent of implementation 2. You complement the PIM with

information on the target platform
and the deployment plan

6. You change entities’ attributes in the PIM as needed and
iterate the analysis until the system is satisfactory in all the
functional and extra-functional dimensions of interest

Analysis
tools

The PSM is read-only!

- To assure the reciprocal
 consistency of PIM and PSM
- To shift the responsibility of
 correctness from the designer
 to the transformation designer

1b. You decorate your PIM with extra-
functional attributes (independent from
any computational model)

PIM

3. The design environment
generates a PSM automatically
via model transformation. The
PSM is bounded to a given
computational model.

5. The back-end tool reports the
analysis results back on to the
PSM and attaches them to the
corresponding entities in the PIM

4. A back-end tool processes
the PIM, the PSM or the code to
feed specialized analysis tools
(dependability, schedulability,
etc)

Code
generation

tools

10

CHESS Methodology – Views and process

 Multi-view design space

 “The architectural description of the system is
organized in one or more constituents called views”
[ISO 42010]

 Distinct concerns allocated to distinct views

 Incremental and iterative process

 Incremental by component refinement

 Iterative by static analysis  verification  back
propagation cycles

 Traceability to requirements

 Automated code generation

11

Design views and design flow

Functional / Component view
[functional concerns]

Hardware /

Deployment view
[communication and

deployment concerns]

Data view
[data type concerns]

Behavioural view
[behavioural concerns]

D
e
s
ig

n
 s

p
a
c
e

M
a
n

a
g

e
d

 b
y

th
e
 d

e
s
ig

n

e
n

v
ir

o
n

m
e
n

t

12

Extra-functional/Component view

[declarative extra-functional

concerns]

Implementation /

Analysis view
[Realization of

extra-functional concerns]

Automatically generated

Design views and design flow

Functional / Component view
[functional concerns]

Extra-functional/Component view

[declarative extra-functional

concerns]

Hardware /

Deployment view
[communication and

deployment concerns]

Generation of

containers /

allocation on

containers

Implementation /

Analysis view
[Realization of

extra-functional concerns]

Automatically generated

Generation of connectors

(communication code)

Data type

definition

Instance extra-functional attributes

User-defined

allocation rules on

containers

Component

instance allocation

on processing unit

Data view
[data type concerns]

Behaviour

definition
[UML state

machines, SDL,

Simulink…]

Interface definition

Behavioural view
[behavioural concerns]

Component type definition

Optional step

Mandatory step

Hardware

definition

P

P

P

Component implementation definition P

Component instance definition

End-to-end extra-

functional attributes

User-defined release protocols

precedence constraint

D
e
s
ig

n
 s

p
a
c
e

M
a
n

a
g

e
d

 b
y

th
e
 d

e
s
ig

n

e
n

v
ir

o
n

m
e
n

t

Component bindings

[P] Step with internal parallelism

P

13

CHESS reference architecture
Component model

Computational Model

Execution platform

C

Middleware Libraries

RTOS BSW

j

ihpj j

n

i
ii

n

i C
T

R
CBR 


















)(

1

Programming model

task T1(TP: Priority;

 Period: Milliseconds);

task body T1 is…

Model-Driven Engineering

P

Domain-specific

concerns

Industrial

applicability

Property

preservation

Composition with

guarantees Compositionality

Composability

requires

requires

S
o

ftw
a
re

 re
fe

re
n

c
e
 a

rc
h

ite
c
tu

re

To relate

architectural entities

to analysis equations

To convey in the

implementation the

extra-functional

properties statically

asserted by analysis

To actively warrant

the properties

asserted by analysis

To develop software

as a set of reusable

software units

14

The CHESS Modeling Language

Introduces a new
Dependability Profile

Imports subsets of
standard languages
 avoid redundancy
fix semantic variation
points

Standard profile for
Modeling and Analysis of
Real-Time and
Embedded Systems

Standard Unified
Modeling Language

Standard profile for
System (and
Requirements) Modeling

Integrates and extends standard
OMG languages

15

CHESS Web Page

16

CHESS and Polarsys

17

CHESS On-going Extensions

 ESA funded FoReVer study

 A Component-based Contract-based approach at
system level

 The system is described in terms of architectural
components

 Components are refined into lower levels as black
boxes until they are refined

 Formalize requirements/properties of system and
components in terms of component contracts

 Formal verification of component contracts
• contract implementation

• step wise refinement of contracts from System
down to SW

 The extensions will be further elaborated
within the SafeCer ARTEMIS project.

18

The new CONCERTO Project

 “Guaranteed Component Assembly with Round
Trip Analysis for Energy Efficient High-integrity
Multi-core Systems”- ARTEMIS JU Call 2012

 Recently started to extend the CHESS project
achievements with

 Wider coverage of industrial domains: medical,
offshore platforms, avionics other than telecom,
space, and automotive

 Extensions to multicore platforms

 Model execution

19

QUESTIONS?

Thank you for your attention

