
QA Test Plan*
Implementation Phase

	Project Name
	COSMOS i6 Test Plan

	Release Number
	1.0

	Feature Name
	COSMOS i6 Test Plan

	Author
	COSMOS DC Team

	Last Saved Date
	 October 2, 2007

	Revision
	0.2

Responsibility List
	Action
	Responsibility

	Owner
	Jimmy Mohsin

	Primary Peer Review
	COSMOS DC Team

	Secondary Peer Review
	

	Secondary Peer Review
	

	Secondary Peer Review
	

	Secondary Peer Review
	

	Secondary Peer Review
	

Change History:

	Revision Date
	Last Revision By
	Reason for Change

	9/19/2007
	Jimmy Mohsin
	Initial version

	9/24/2007
	Bill Muldoon
	Created test plans in Section 3 for the Management Domain and the Data Broker

	9/27/2007
	Jimmy Mohsin
	Format changes; and made the document more COSMOS-centric

	9/28/2007
	Mark Weitzel
	Added end-to-end section

	
	
	

TABLE OF CONTENTS

51
introduction

51.1
Overview

51.2
Scope

51.3
Definitions, Acronyms and Abbreviations

61.4
References

72
test Configuration

72.1
System Configuration

72.2
Hardware Requirements

72.3
Software Requirements

83
Test case specification

83.1
Testing the Management Domain

103.2
Testing the Data Broker

133.3
Test Results

133.4
Test Plan Name (e.g. QA Test Plan – Regression)

144
Appendix

144.1
Sample Cross-Platform Matrix

PREFACE

The purpose of this document is to give a detailed listing of all the tests that will be performed on a feature in a project. There will be many QA Test Plans for each project, one for each major feature described in the Product Release Specification.

The feature is broken down into functional areas that are further broken down by enumerated test cases. Any information that is specific to a test case should be documented inside the test case. A project/product may consist of multiple test plans. Please reference the dependencies section.

This is intended to be a living document. The development cycle is a dynamic process in which our understanding of the project and its criteria for success are refined over time. It is therefore expected that the completed Test Plan will undergo many revisions during the course of a project as requirements, resources, and constraints evolve over the course of a project.

The QA Engineer is responsible for the contents of this document. Deliverables that are required in order to complete this document are:

· PRS or PRS for Component Project

· Detailed Design Specifications

· QA Project Plan

Notes: All template instructions can be identified by their gray italic type. This information may be removed after completing the necessary project information.

1 introduction

1.1 Overview

This test plan has been created for testing the components delivered to meet the COSMOS i6 Enhancement Requests. Additionally, we need to ensure that we complete an end-to-end test for the COSMOS Data Collection i6 common components.
1.2 Scope

1.2.1 Requirements

· We need to have a File-based Data Manager.

· We need to have an RDBMS-based Data Manager.

· We need to have a COSMOS i6 instance, which includes a Management Domain and a Data Broker.
1.2.2 Dependencies

· The complete set of COSMOS dependencies is located on the wiki at http://wiki.eclipse.org/COSMOS_i6_dependencies
· The end to end use cases should be tested using the variations of the operating system and JDKs. In the past, subtle differences between JDKs have been detected.

· It is permissible for a component to limit support of platforms. For example, the SML editor and does not need to be tested on Red Hat Linux.
1.3 Definitions, Acronyms and Abbreviations

Test Case Specification: Specifies the test inputs, execution conditions, and predicted results for an item to be tested, also referred to as test case. Test case specifications are documented in the QA test plans.

Test Plan: (1) A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning. (2) A document that describes the technical and management approach to be followed for testing a system or component. Typical contents identify the items to be tested, tasks to be performed, responsibilities, schedules, and required resources for the test activity.

QA Project Plan: A document that provides a public method for analyzing, assigning resources to and directing QA activities related to releasing a particular product. The QA Project Plan provides a framework for testing, identifying tasks, assigning and communicating responsibilities, coordinating testing activities avoiding duplication of effort and ensuring the sharing of test data throughout all phases of testing.

1.4 References

Provide a complete list of all documents referenced elsewhere in this document.

Identify each document by title, report number (if applicable), date, and publishing organization.

Specify the sources from which the references can be obtained.

· Click here to begin typing
2 End-to-End test
2.1 Overview
The end-to-end testing consists of an example scenario that collects data from a managed resource, and then displays that information through a web user interface. In addition, the SML repository is created by editing an SML-IF document and then importing it, creating the repository structure. It is based on the demo, an overview of which can be found here: http://wiki.eclipse.org/index.php/COSMOS_Demo
2.2 Data Collection & Data Visualization Requirements
The data collection framework will be deployed and tested on the following configurations. In all cases, the resource being monitored is the Tomcat server. This server is also what is monitored. Note: The I6 driver requires that an OSGi container be deployed inside of the Tomcat server. This dependency will be removed for i7.
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	OS
	JDK
	Server
	DB

	Windows XP SP2
	IBM JDK 1.5
	Tomcat 5.5
	Derby 10.1.2

	Windows XP SP2
	Sun JDK 1.5
	Tomcat 5.5
	Derby 10.1.2

	RHES 5
	Sun JDK 1.5
	Tomcat 5.5
	Derby 10.1.2

	RHES 5
	IBM JDK 1.5
	Tomcat 5.5
	Derby 10.1.2

2.3 SML Editor Requirements

The SML-IF Editor is an Eclipse Plug-in Application. It is used in the end-to-end to create the repository that is deployed with the web application. The only supported operating system for this component at the present time is Windows. Both versions of the JDK are supported.
	OS
	JDK

	Windows XP SP2
	IBM JDK 1.5

	Windows XP SP2
	Sun JDK 1.5

2.4 Test Specification
The current set of i6 end-to-end test cases are checked into the COSMOS CVS repository. The TPTP test framework was utilized as the test harness. The steps to execute the manual tests are documented in the test case itself.
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cosmos/tests/common/org.eclipse.cosmos.examples.e2e.tests/manual/?root=Technology_Project
The end-to-end consists of three basic steps:

· Collecting data
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cosmos/tests/common/org.eclipse.cosmos.examples.e2e.tests/manual/DataCollection.CBE.testsuite?root=Technology_Project&view=log
· Navigating the repository
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cosmos/tests/common/org.eclipse.cosmos.examples.e2e.tests/manual/DataVisualization.UI.Component.Widget.testsuite?root=Technology_Project&view=log
· Running the reports
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.cosmos/tests/common/org.eclipse.cosmos.examples.e2e.tests/manual/DataVisualization.UI.Reports.testsuite?root=Technology_Project&view=log
2.5

3 Test case specification

Section 3 of this document should provide detailed information of features that will be tested. Each feature should be broken down into detailed test cases.

Note:
For groups that store their test plans online, in an automated tool, or at a project’s website, Section 3 of this document does not have to be completed. Simply point the reader to the appropriate location to access the test case specifications.

3.1 Testing the Management Domain
The following test cases for the management domain will be converted into JUnit tests and integrated with the framework adopted by the COSMOS team.

	#
	Test Case
	Testing Procedures
	Test Created By
	Notes/Comments

	1
	Registering a Broker with a Management Domain
	1. startup a Management Domain

2. create a ManagementDomainClient object

3. invoke the registerBroker() operation of the ManagementDomainClient

4. invoke the getBrokers() operation

5. result should show the newly registered Broker from step 3
	Mulwi01
	

	2
	Deregistering a Broker from a Management Domain
	1. startup a Management Domain

2. create a ManagementDomainClient object

3. invoke the registerBroker() operation of the ManagementDomainClient

4. invoke the getBrokers() operation

5. result should show the newly registered Broker from step 3

6. invoke the deregisterBroker() operation

7. invoke the getBrokers() operation

8. result should NOT show the newly registered Broker from step 3
	Mulwi01
	

	3
	querying a Broker by name from a Management Domain
	1. startup a Management Domain

2. create a ManagementDomainClient object

3. invoke the registerBroker() operation of the ManagementDomainClient

4. invoke the getBrokers() operation using the broker name which was specified in step 3

5. result should show the newly registered Broker from step 3

	Mulwi01
	

	4
	querying a Broker by classification from a Management Domain
	1. startup a Management Domain

2. create a ManagementDomainClient object

3. invoke the registerBroker() operation of the ManagementDomainClient

4. invoke the getBrokers() operation using the classification which was specified in step 3

5. result should include the newly registered Broker from step 3

	Mulwi01
	

	5
	Pinging a Broker in a Management Domain
	1. startup a Management Domain

2. create a ManagementDomainClient object

3. invoke the registerBroker() operation of the ManagementDomainClient

4. invoke the getBrokers() operation

5. note the lastmsgtime attribute of the newly registered Broker from step 3

6. wait at least one minute

7. invoke the pingManagementDomain() operation using the broker name which was specified in step 3.

8. invoke the getBrokers() operation

9. result should show that the lastmsgtime attribute of the registered Broker from step 3 is at least one minute later than the lastmsgtime which was noted in step 5
	Mulwi01
	Note that the Data Broker initialization executes this operation.

The registerBroker() operation also updates the lastmsgtime attribute.

	
	
	
	
	

3.2 Testing the Data Broker

These tests exercise the operations of the Data Broker through the Data Broker Client API.
	#
	Test Case
	Testing Procedures
	Test Created By
	Notes/Comments

	1
	Registering a Data Manager with a Broker
	1. startup a DataBroker

2. create a DataBrokerClient object

3. invoke the registerDataManager() operation of the DataBrokerClient

4. invoke the getDataManagers() operation

5. result should show the newly registered DataManagerfrom step 3
	Mulwi01
	

	2
	Deregistering a Data Manager from a Broker
	1. startup a DataBroker

2. create a DataBrokerClient object

3. invoke the registerDataManager() operation of the DataBrokerClient

4. invoke the getDataManagers() operation

5. result should show the newly registered DataManagerfrom step 3

6. invoke the deregisterDataManager() operation

7. invoke the getDataManagers() operation

8. result should NOT show the newly registered DataManager from step 3
	Mulwi01
	

	3
	querying a Data Manager by classification from a Broker
	1. startup a DataBroker

2. create a DataBrokerClient object

3. invoke the registerDataManager() operation of the DataBrokerClient

4. invoke the getDataManagers() operation using the classification which was specified in step 3

5. result should include the newly registered DataManager from step 3
	Mulwi01
	

	4
	Pinging a Data Manager in a Broker
	1. startup a DataBroker

2. create a DataBrokerClient object

3. invoke the registerDataManager() operation of the DataBrokerClient

4. invoke the getDataManagers() operation

5. note the lastmsgtime attribute of the newly registered DataManager from step 3

6. wait at least one minute

7. invoke the pingDataBroker() operation using the DataManager name which was specified in step 3.

8. invoke the getDataManagers() operation

9. result should show that the lastmsgtime attribute of the registered DataManager from step 3 is at least one minute later than the lastmsgtime which was noted in step 5
	Mulwi01
	Note that the DataManager initialization executes this operation.

The registerDataManager() operation also updates the lastmsgtime attribute.

	
	
	
	
	

3.3 Test Results

Report the test results for each module tested. The testing results should be reported in a concise and consistent manner to avoid ambiguity on what has been tested along with its outcome. The reporting of results can be done with tools such as Jasweb or Test Director. This can also be done independent of a tool, in a format similar to the table below.
List all of the test cases from each Test Plan used for this test cycle and the result (pass/fail) of each test. These tables can simply be cut and pasted from the test plans.

3.4 Test Plan Name (e.g. QA Test Plan – Regression)

3.4.1 Test Section Header (e.g. Installation)

	#
	Test Case
	Tester Name
	Result (Pass/Fail)

	
	
	
	

	
	
	
	

4 Appendix

Use this section to include any additional references to documents or resources, which would further clarify this test plan. Example:
4.1
	
	

	
	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

PAGE
COSMOS i6 Test Plan
	Copyright © 2007 CA, IBM, and others, made available under the Eclipse Public License
	Page 2 of 15

