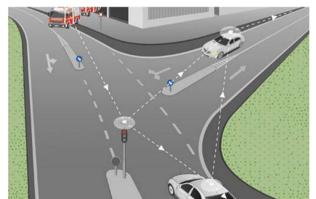


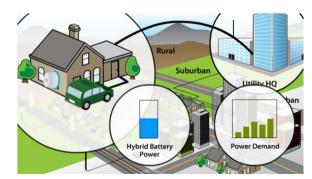
Typescript support for Intel Edison Why, how, Expected benefits

HEADS Project
Olivier Barais
INRIA
barais@irisa.fr

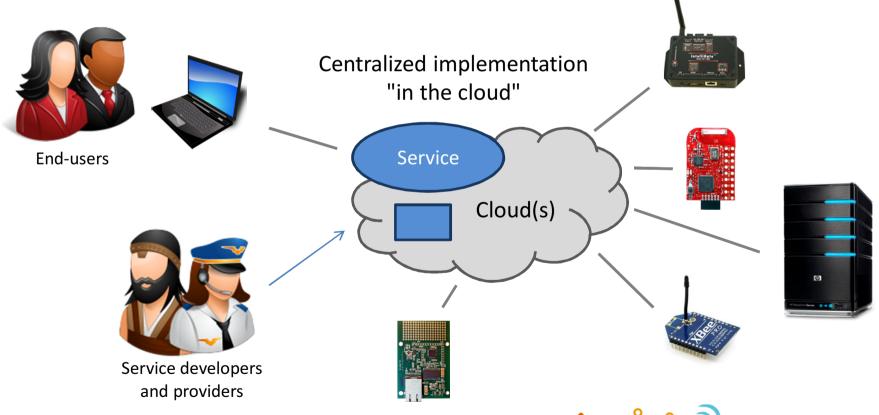

HD-Services

- Heterogeneous and Distributed Services
 - Heterogeneous: The infrastructure on which the service runs is composed of a set of different nodes and networks.
 - O The "Future Computing Continuum" which ranges from microcontroller based sensors and devices to cloud.
 - Distributed: The implementation of the services is composed of a set of independent processes communicating asynchronously.
 - O Truly distributed services implementation is required in order to provide useful and reliable services which take advantage of the infrastructure.

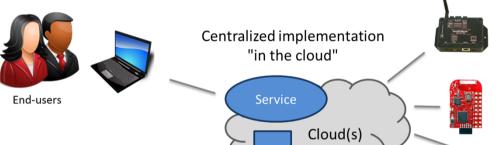



Examples

- Health domain and ambient assisted living
- Energy domain and smart grids
- Environmental monitoring and oil and gas
- Safety in hazardous environments
- Intelligent Transport Systems (ITS)
- ...



IOT Days, Grenoble, March 2015

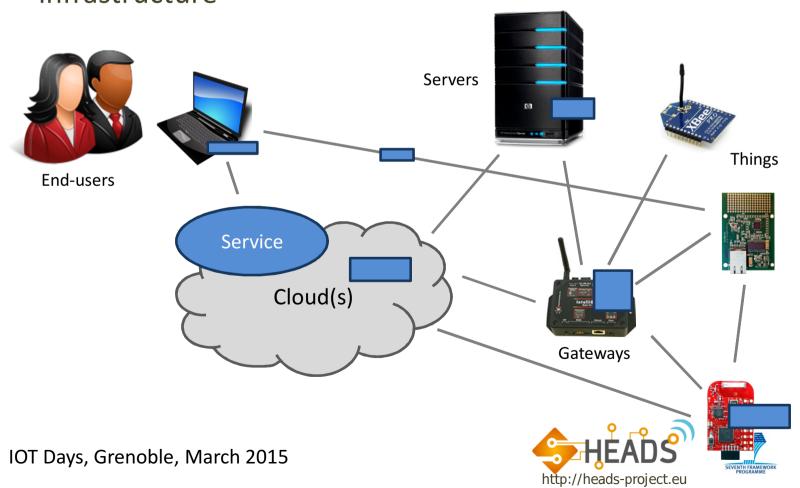

Why "HD-Services" ?

 Isn't Internet of Things about having everything connected and available in the cloud?

Limitations of centralized approaches

- Very easy to develop, evolve and maintain but...
 - Underexploits "Things" capabilities
 - Does not allow real-time or critical services
 - Not resource efficient (bandwidth)
 - Not robust
 - Does not scale

Good solution when possible but not sufficient in many realistic cases



Distributing the implementation

The service implementation is distributed to exploit the infrastructure

Benefits of HD-Services

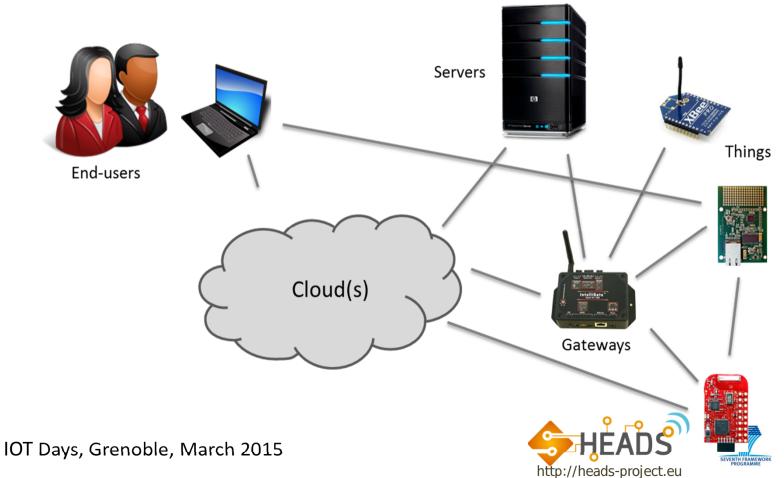
- Complex to develop, lots of different skills involved but...
 - Allows fully exploiting the features of each platforms
 - Allow for local and/or decentralized decision making
 - Robust to partial and/or temporary failures
 - Push processing close to data sources
 - Allow for real-time and critical services
 - Can scale in a "big data" context

Servers End-users

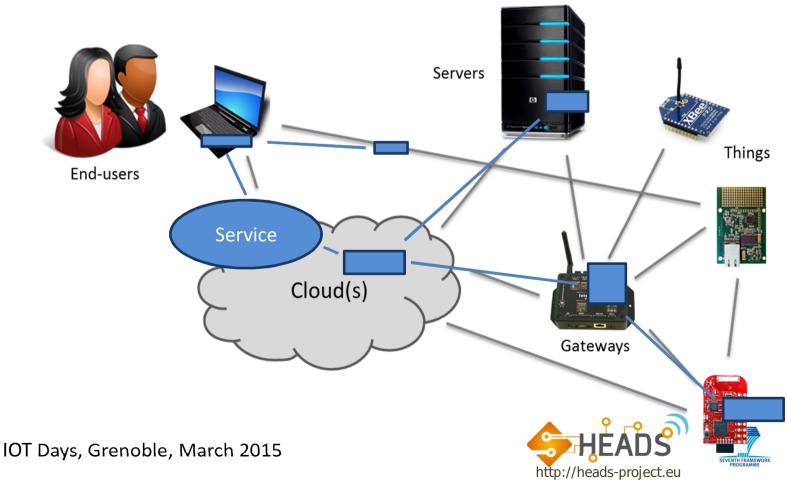
Cloud(s)

Service

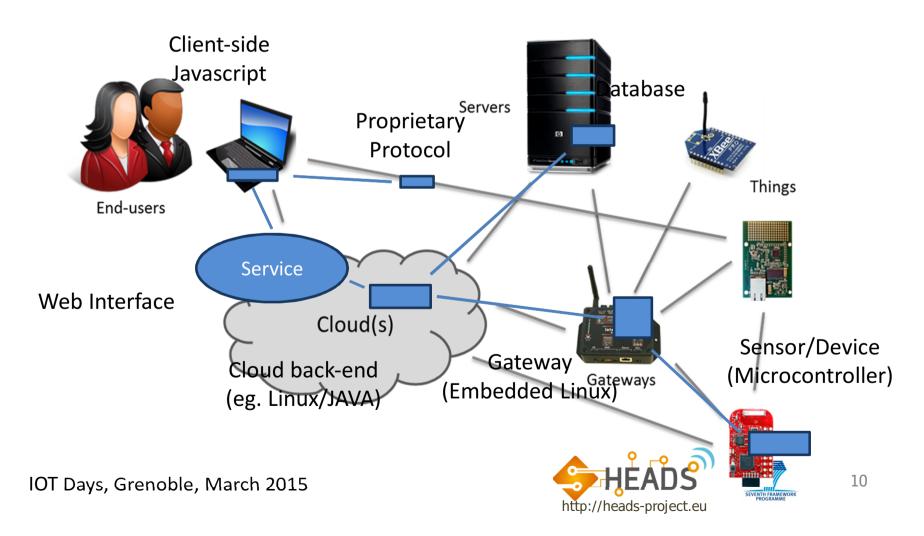
In practice for more and more real-world services are HD-Services



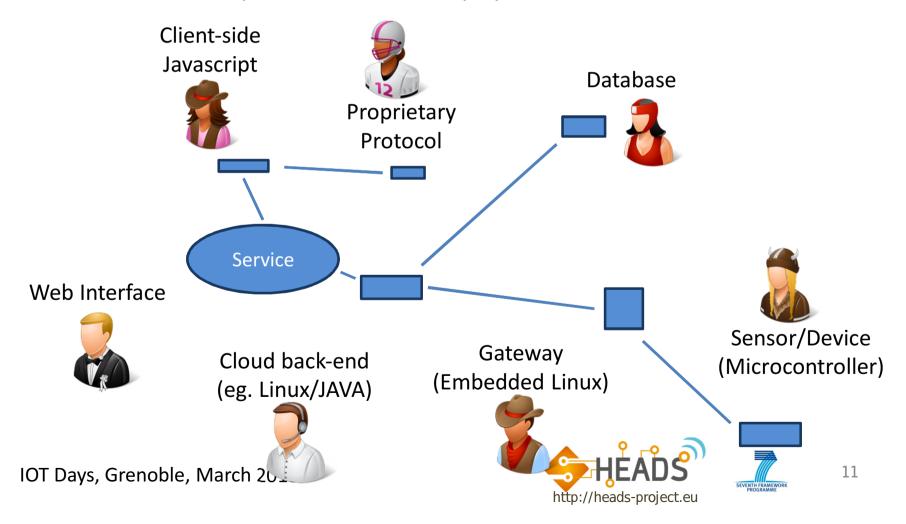
Things


What are the problems? (1/6)

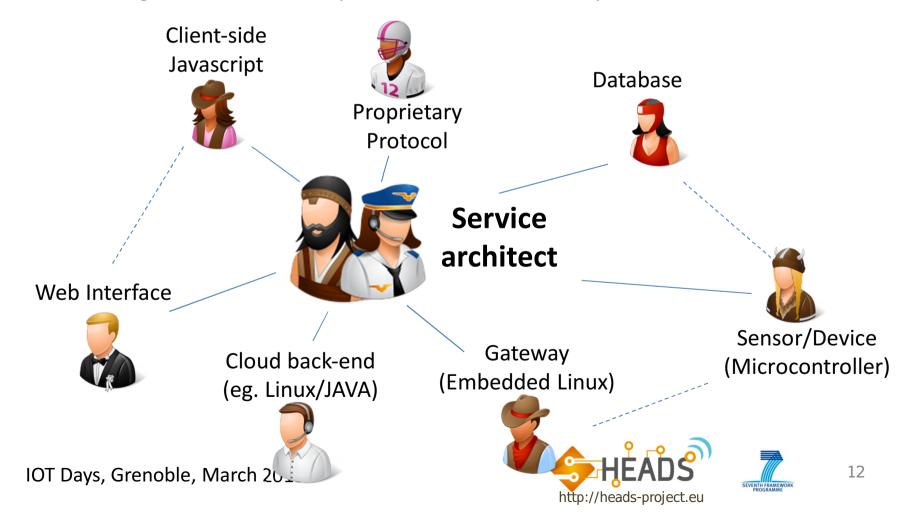
Here is an example infrastructure


What are the problems? (2/6)

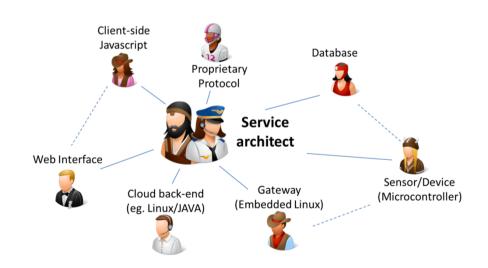
Here is the software components needed for the service


What are the problems? (3/6)

Heterogeneous infrastructure and technologies are needed


What are the problems? (4/6)

- A lot of different expertise are needed
 - Both for development and runtime deployment/maintenance


What are the problems? (5/6)

- Someone needs to coordinate all experts
 - Design the different components, their functionality and interactions

What are the problems? (6/6)

- Large heterogeneous teams need to collaborate
 - A service architect / developer
 - Many "platform experts"
 - Complex and expensive
 - Unavailable to small actors
- Service maintenance and evolutions
- Infrastructure is dynamic
 - Constant evolution/adaptation
- (Early) Validation?
- Software reuse?

Challenging and expensive

Challenges

- Provide a support for a multi-views point approach for IoT on top of Eclipse
 - A kind of Eclipse Polarsys Capella for IoT;)

- Viewpoints examples
 - Manage development of large applications
 - O Typescript example

TODAY

- Manage the deployment and evolution of large scale distributed applications
 - O Kevoree example (www.kevoree.org)
- Event streaming management
- Reactive programming (ThingML.org)

HEADS Goal

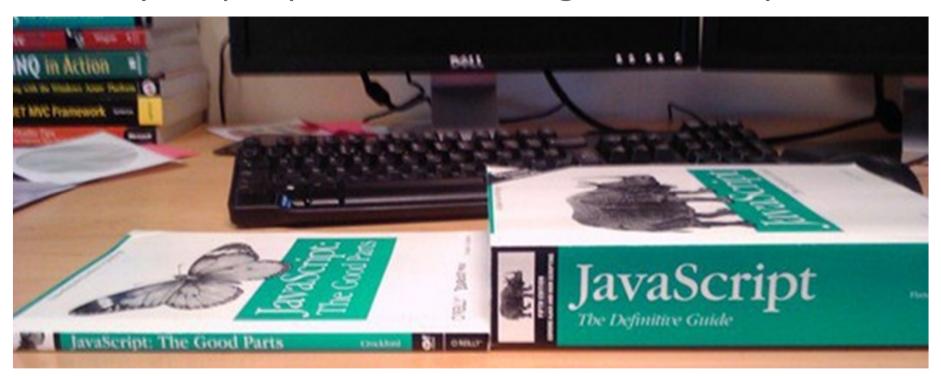
- Provide tools and methods
 - For each actor to concentrate on his task
 - For decoupling the tasks of different actors
 - Using state of the art software engineering practices
 - O Modularity, reusability, runtime deployment, continuous integration, validation, etc...
 - Cost efficient and practically usable
 - O No large overhead, integrated with legacy systems, etc...

Using state of the art software engineering practices

A support of typescript for Intel Edison

A viewpoint for service developer

What is TypeScript?


- Free and open source, strongly supported by Microsoft
- Based on ecmascript 4 + ecmascript 6
- Created by the father of C# Anders Hejlsberg
- A superset of JavaScript
- To answer why we need JavaScript+, we need to understand what's wrong with vanilla JavaScript

What is the problem?

Why do people hate working in JavaScript?

Using state of the art software engineering practices;)

What is the problem?

- JS is designed for small things
- We now use to do big things
- But JavaScript is not suited for building large applications
- Your JavaScript code gets complex; it becomes extremely unwieldy

Let's look at TypeScript

 To get started with TypeScript, grab it from http://typescriptlang.org

 Let's look at TypeScript, first the core concept...

TypeScript - first glance - optional strong type checking

```
// js
    function f(x, y) {
       return x * y;
// ts
    function f(x : number, y : number) : number {
        return x * y;
                                                                       \exists function f1(x, y) {
                                                                          return x * v;
                                                                       □ function f2(x: number, y: number) {
                                                                          return x * y;
// Type information is enforced in design and
                                                                       f2(1, 2);
                                                                        f2("xx", "yy")
                                                                        (x: number, y: number) => number
// compile time, but removed at runtime
                                                                        Supplied parameters do not match any signature of call target
```


TypeScript features

- Static Type Checking
- Modules and Export
- Interface and Class for traditional Object Oriented Programming
- Works with all your existing JavaScript libraries
- Low learning overhead compared to similar JavaScript systems (CoffeeScript or Dart)
- Amazing Visual Studio, eclipse or IntelliJ tooling
- Outstanding team and refactoring scenarios

Summary - why TypeScript

- Have to learn one more thing there is a learning curve, very easy if you already know JavaScript, or if you know C# or Java very well.
- You still have to learn JavaScript Understanding how TypeScript converts to JavaScript will teach you better JavaScript
- Some definition files don't exist or incomplete, but I think this will vanish very quickly. These aren't hard to write if you really need something.
- Modules and classes enable large projects and code reuse
- Compile-time checking prevents errors
- Definition files for common JavaScript libraries makes them very easy to work with, and provides strong type checking
- Source map debugging makes debug easy

How?

MRAA

- Libmraa is a C/C++ library with bindings to JavaScript & python to interface with the IO on Galileo, Edison & other platforms, with a structured and sane API where port names/numbering matches the board that you are on
- We need an interface definition for libmraa (mraa.d.ts)
 - Generate mraa.d.ts from .h file

https://github.com/HEADS-project/mraa hpp2ts generator

Or get it from github

git clone https://github.com/HEADS-project/mraa

Test it

- First install the node.d.ts
- > npm install tsd -g #https://github.com/borisyankov/DefinitelyTyped

and next you can download it in typing

> tsd query node -a install #Download node.d.ts

Use the following command to compile your typescript:

> tsc --module commonjs AioA0.ts

next you can install mraa in this folder:

> npm install mraa

finally you can run the samples e.g. AioA0:

> sudo node AioA0.js

Using MRAA definition for typescript

```
///<reference path='typings/node/node.d.ts' />
///<reference path='../../src/typescript/mraa.d.ts' />
```

```
var m = require('mraa'); //require mraa
console.log('MRAA Version: ' + m.getVersion()); //write the mraa version to
the console
```

var analogPin0 = new m.Aio(0); //setup access analog inpuput pin 0
var analogValue = analogPin0.read(); //read the value of the analog pin
console.log(analogValue); //write the value of the analog pin to the console

More complex example

```
///<reference path='collections/collections.d.ts' />
///<reference path='node/node.d.ts' />
///<reference path='node/express.d.ts' />
///<reference path='mraa.d.ts' />
import fs = require("fs")
import http = require("http")
import path = require("path")
import mraa= require("mraa")
import express = require("express")
import index = require("./routes/index")
import user = require("./routes/user")
var col = fs.readFileSync('./collections/collections.js','utf8');
eval(col);
```

Initial conclusion - if I have to make a decision for you...

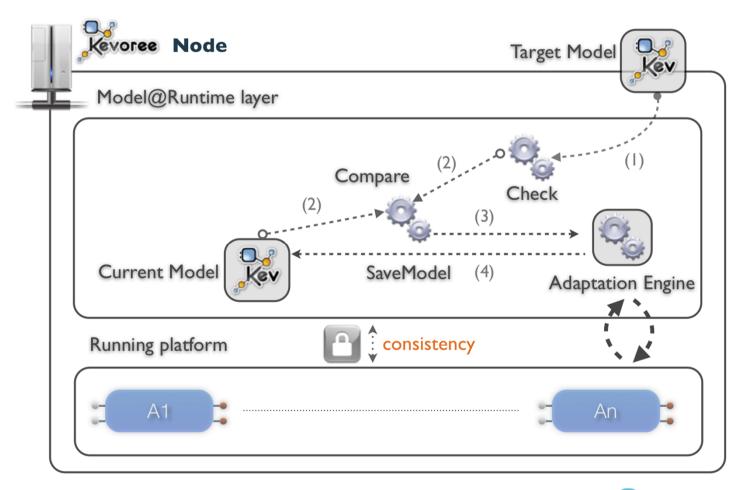
- If you see yourself using more JavaScript. You have to look at TypeScript.
- If you and your team has to work on JavaScript together, you have to look at TypeScript.
- Once you've done the initial hard work and converted a project. You can't stand going back.

Next steps

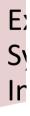
- Complex deployment of HD-Services
 - A configuration language for managing module deployment and reconfiguration

Kevoree (www.kevoree.org)

- Kevoree project aims at supporting dynamic adaptation in distributed system (What Benjamin calls Management layer)
 - O MDE@Runtime
 - Shared model representation for distributed nodes
 - Offline & online operation, compute@Model level, apply @Runtime
 - O Component-based
 - Actor semantics on each ports to closely separate component behavior
 - Communication semantics between component in channel
 - Support component reconfiguration (parametric, architectural, behavioral)
 - O Continuous Design, type definition continuous definition
 - Hot (re-)deploy & provisioning
 - O Heterogeneity management with NodeType



Kevoree general overview



An OSGi-like framework for HD-Services

M@R Runtimes for Distributed and Heterogeneou<u>s</u> adaptive systems

– Conclusion http://heads-project.eu

Time for Demo

Thank you!

• Questions?

