
Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy Support in Eclipse STP
www.eclipse.org/stp

By Jerry Preissler & David Bosschaert

2 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

3 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

What is a policy?

In a general context:

“a definite course or method of action selected from among
alternatives and in light of given conditions to guide and
determine present and future decisions”

www.merriam-webster.com

In a technical context:

A standardized description of the capabilities, requirements or
general characteristics of an entity

based on WS-Policy 1.2

http://www.merriam-webster.com/dictionary/policy

4 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

For automated processing, policies must posses some key
traits

 a standardized, machine-processable syntax

 formal definitions for the actual properties that are
expressed

 a defined method to associate policies with policy
subjects

WS-PolicyWS-Policy

domain specific
WS-Addressing, WS-RM Policy, WS-Atomic Transaction,
WS-BusinessActivity, WS-SecurityPolicy

WS-PolicyAttachment

5 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 <wsp:Policy Name="http://www.example.com/policies/P1"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:wsp="http://www.w3.org/ns/ws-policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncrytedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

WS-Policy provides a syntax for expressing policies

Alternative

Compositors

Policy

Assertions

Alternative 1

Alternative 2

6 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

WS-Policy provides operations to work with policies

Policy A

Policy B

intersect

merge

normalize
Policy A´

Policy A

Policy B

Policy A + B

7 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

8 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy Editor overview

 The policy editor provides two
editor windows:

 The high level editor shows the
complete structure of the policy

 The detail editor shows one
selected policy assertion
together with all attributes

9 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

10 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

 add and remove individual

assertions

11 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

 add and remove individual

assertions

 switch to the detail editor to work

with an individual assertion

12 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor
 Similar in look & feel to PDE

Extension Point editor
 Can edit the details of WS-Policy

assertions as well as other types
of XML files that contain
embedded elements.

 Editor dynamically synthesizes a
GUI based on the schema
definition of the policy assertions.

 GUI works with most standard
XML Schema definitions

 Based on XEF (also part of STP)

13 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor – Policy Catalogue
 When editing policies, new

ones can be added from a
Catalogue.

 The catalog has a simple
interface

 Can serve policies from local
filesystem

 Look up catalog in database
 WTP XMLSchema Catalog

integration

14 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor – Features
 Widgets for many XSD data types
 Display names, tooltips
 Context-sensitive help
 Display of defaults values
 Required fields
 Enumerated values
 Password fields
 Representation of xs:choice,

xs:sequence and xs:any
 Much more...

15 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details editor – What is being edited
 You can view/edit the source XML too, could look like this

(WTP XML Editor):

16 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details editor – Launching
 Current use is primarily embedded in applications, launching is done by

opening an editor by calling IDE.openEditor() with a
 org.eclipse.stp.policy.common.editors.IPolicyDetailEditorInput
or
 org.eclipse.stp.ui.xef.editor.XMLProviderEditorInput
Editor ID: org.eclipse.stp.ui.xef.editor.XefEditor

 For testing there’s the XML XPath View:

 It allows you to specify a policy file, what part in the file needs to be
edited (as XPath), settings and then open the editor

17 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

18 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policies

Summary:

Open the details editor directly, using the XML XPath View, to edit:
 WS-PolicyAttachment file
 Embedded WS-Policies in a WSDL file
 A CXF Configuration file (non-WS-Policy)

19 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policy documents

Exercises:

1.Add a ws-addressing policy to the policy_attachment.xml file
 Use the XML XPath view to edit the policies in policy_attachment.xml
 XPath: //wsp:All

2.Open the provided greeter.wsdl file and change the
retransmission timeout of the WS-RM policy to 70000.
 Use the XML XPath view to edit the policies in greeter.wsdl
 XPath: //*[local-name()='Policy' and namespace-uri()='http://www.w3.org/ns/ws-policy']

3.Edit features in a cxf-features.xml file.

4.Stretch exercise – open the editor from code on a memory object
(which has no file).

20 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policy documents
The editor will look like this:

21 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create your own Policy Type

Summary:
 Create your own logging policy definition
 Use the policy
 Make it look nice

22 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create your own Policy Type

Exercise:
Create a new logging policy of which an instance looks like this:
 <acme:Logging xmlns:acme="http://www.acme.com/xsd/2007/08/logging">
 <file filename="mylogfile.log" write_interval="5000" echo="true" />
 </acme:Logging>

 With two sub-elements: console logger and file logger
 File logger has:

 a required field ‘filename’
 echo to screen field (boolean)
 a write interval (default: 10000 ms)

23 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create a Basic Logging Policy
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xef="http://schemas.eclipse.org/stp/xsd/2006/05/xef"
 xmlns:xefgui="http://schemas.eclipse.org/stp/xsd/2006/05/xef/gui"
 targetNamespace="http://www.acme.com/xsd/2007/08/logging"
 xmlns:tns="http://www.acme.com/xsd/2007/08/logging">

 <xs:element name="Logging">
 <xs:complexType>
 <xs:choice>
 <xs:element name="file" type="tns:fileLoggingType"/>
 <xs:element name="console" />
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="fileLoggingType">
 <xs:attribute name="filename" type="xs:string" use="required"/>
 <xs:attribute name="echo" type="xs:boolean" default="false"/>
 <xs:attribute name="write_interval" type="xs:positiveInteger"

 default="10000" />
 </xs:complexType>
</xs:schema>

24 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Use the new Policy

 Add this logging.xsd to your current Project.
 Edit a policy document, e.g. test.xml
 Add the logging policy
 Add the file subelement

Raw, but functional editor 

25 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Prettify the new policy in the UI

When every thing works, make it look nice
 Policy in ‘Audit’ category and is called ‘Logging’
 Make sure all labels have nice display names
 Put write_interval in an advanced section
 Add a ‘milliseconds’ unit to write_interval
 Make sure everything has tooltips and documentation

26 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Prettify the UI
Using the XEF reference, add annotations to make the policy look nice:

 The reference guide is also here: http://wiki.eclipse.org/STP/XEF_Reference

27 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Influencing the UI

 An enhanced version with more UI features of this tutorial is
available on the STP Wiki:
http://wiki.eclipse.org/STP/Policy_editor_documentation

 Logging schemas available:
 Basic logging file is called: logging_basic/logging.xsd
 Final logging file is called: logging_full/logging.xsd

28 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

29 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy-driven mechanisms can be used to enhance the
functionality provided by an SOA

• SOA uses a Service Registry to
provide a level of indirection
between the service consumer and
the service provider

• Non-functional properties of
consumers and providers alike can
be specified with policies

The functionality of an SOA can
be enhanced by including policy-
driven negotiation into the
service provider lookup process

30 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

SOA provides a level of indirection between consumer and
provider

Service Registry

ProviderConsumer

publishlook up

call

31 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be integrated in the lookup mechanism

Service Registry

ProviderConsumer

publishlook up

Provider
Policy

Consumer
Policy

call

32 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be integrated in the lookup mechanism

Service Registry

•Alternatives are compared crosswise between policies
•Non-matching alternatives are rejected
•Matching alternatives are included in an “Agreed Policy”

33 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The resulting policy captures the properties that are common
to both participants

•Matching alternatives are included in an “Agreed Policy”

34 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns • Transport selection

• Location-based routing

• Message tracking

35 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns

• Authentication

• Authorization

• Encryption

• Signature

Security aspects

36 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns

• Response time

• Reliability

• Cost

Security aspects

Quality of service

37 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The policy-driven mechanism enhances SOA functionality in
three important ways

Service Registry

ProviderConsumer

publishlook up

call

The service
lookup ensures
that consumer

and provider are
compatible

The participants don't need to
implement common cross-cutting

functionality

Service calls
are

controlled by
individual
policies

38 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies ?

 How can you extend the STP policy editor ?
 Exercise 3

Agenda

39 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The STP policy editor combines two main contributions

The XEF-based editor was
contributed by IONA

The WTP-based editor was
contributed by SOPERA

40 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The functionality is distributed across several plugins

Eclipse Platform

WTP-based Policy Editor
Plugin

Extension point:
org.eclipse.ui.editors

XEF Policy Editor
Plugin

Extension point:
org.eclipse.ui.editors

STP Policy Common
Bundle

Common interfaces,
Libraries

Policy Model Bundle

WS-Policy based

Policy Generator Bundle

Generation,
 Transformation

Policy Validation Bundle

Validation Framework
based

Neethi EMF Validation Framework

IValidator

Eclipse Platform

STP editor

work in progress

41 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies ?

 How can you extend the STP policy editor ?
 Exercise 3

Agenda

42 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – XEF extension points

Summary:

 Text filters for password fields

 Callback for populating value sets

 Custom field editors

43 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Plug in filters via
Extension Point:
 <extension
 point="org.eclipse.stp.xef.xefExtension">
 <filter class="org.example.MyFilter"
 filterId="MyFilter" />
 </extension>

XEF Tutorial Part 3 – Text Filters for Passwords
Password fields can use custom filters to process the value:

XSD Attribute Definition:
 <xs:attribute name="lock_password" type="xs:string" use="required">
 <xs:annotation>
 <xs:appinfo>
 <xef:displayName>Lock Password</xef:displayName>
 <xef:filter>MyFilter</xef:filter>
 <xefgui:widget>password</xefgui:widget>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

MyFilter (reverses pwd in document):
package org.example;
import org.eclipse.stp.ui.xef.editor.TextFilter;
public class MyFilter implements TextFilter {
 public String filter(String data) {
 return new StringBuilder(data).
 reverse().toString();
 }
}

44 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Value Proposal Callbacks
 You might want users to select from a prepopulated set of values

Possible through XSD enumeration:
 <xs:attribute name="level" default="Info">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Fatal"/>
 <xs:enumeration value="Error"/>
 <xs:enumeration value="Warning"/>
 <xs:enumeration value="Info"/>
 <xs:enumeration value="Debug"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 Maybe you need a more
dynamic approach, where
possible values are fed from
your application.

45 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Value Proposal Callbacks (impl)
 A more dynamic approach is via a callback, declared in XSD:
 <xs:attribute name="level" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <xefgui:context>
 <xefgui:values>loglevels</xefgui:values>
 </xefgui:context>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

 Realized through an IContextProvider
 IContextProvider myCtxProvider = new IContextProvider() {
 public Object getData(String ctxId) {
 return null;
 }
 public String[] getValues(String ctxId, String ctxFilter) {
 if ("loglevels".equals(ctxId)) {
 return new String [] {"Boring", "Interesting"};
 }
 return null;
 }
 };
 new XMLProviderEditorInput(settings, selectedFile.getProject(),
 new XPathXMLProvider(...), schemaProvider, myCtxProvider),

 Currently only supported via XMLProviderEditorInput
Hopefully in IPolicyDetailEditorInput in Ganymede

46 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editors

Some field may need their own complex editors
 These can be plugged in via an Extension point
 Example:

47 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editors
XSD Attribute Definition:
 <xs:attribute name="contact_person" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <xef:fieldEditor>nameFieldEditor</xef:fieldEditor>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

Plug in field editor via Extension Point:
• <extension point="org.eclipse.stp.xef.xefExtension">
• <fieldEditor class="org.eclipse.stp.xef.test.MyFieldEditor"
• fieldEditorId="nameFieldEditor">
• </fieldEditor>
• </extension>

48 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editor impl
public class MyFieldEditor extends AbstractFieldEditor {
 private Text firstName;
 private Text lastName;
 private String result;
 public MyFieldEditor() {
 super(null);
 }
 protected Control createDialogArea(Composite parent) {
 Composite area = (Composite) super.createDialogArea(parent);
 final GridLayout gridLayout = new GridLayout();
 gridLayout.numColumns = 2;
 gridLayout.makeColumnsEqualWidth = false;
 area.setLayout(gridLayout);

 new Label(area, SWT.NONE).setText("First Name: ");
 firstName = new Text(area, SWT.BORDER);
 new Label(area, SWT.NONE).setText("Last Name: ");
 lastName = new Text(area, SWT.BORDER);
 return area;
 }

 protected void okPressed() {
 result = firstName.getText() + " " + lastName.getText();
 super.okPressed();
 }

 public String getFieldText() {
 return result;
 }
 // Some details ommitted, look at the
 // org.eclipse.stp.ui.xef.editor.QNameFieldEditor for a full example
}

49 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The end

Thank you for your attention

Any questions?

50 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

References

 Policy Editor Quick Start
http://wiki.eclipse.org/STP/Policy_Component/Policy_editor_documentation

 XEF Reference Guide
http://wiki.eclipse.org/STP/Policy_Component/XEF_Reference

 Latest info / getting the sources
http://wiki.eclipse.org/STP

 Getting involved
stp-dev@eclipse.org

 WS-Policy Standard
http://www.w3.org/2002/ws/policy/

 Understanding WS-Policy processing
http://www-128.ibm.com/developerworks/webservices/library/ws-policy.html

http://wiki.eclipse.org/STP/Policy_Component/XEF_Reference
http://wiki.eclipse.org/STP

Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy Support in Eclipse STP
www.eclipse.org/stp

By Jerry Preissler & David Bosschaert

2 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

3 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

What is a policy?

In a general context:

“a definite course or method of action selected from among
alternatives and in light of given conditions to guide and
determine present and future decisions”

www.merriam-webster.com

In a technical context:

A standardized description of the capabilities, requirements or
general characteristics of an entity

based on WS-Policy 1.2

4 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

For automated processing, policies must posses some key
traits

 a standardized, machine-processable syntax

 formal definitions for the actual properties that are
expressed

 a defined method to associate policies with policy
subjects

WS-PolicyWS-Policy

domain specific
WS-Addressing, WS-RM Policy, WS-Atomic Transaction,
WS-BusinessActivity, WS-SecurityPolicy

WS-PolicyAttachment

5 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 <wsp:Policy Name="http://www.example.com/policies/P1"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:wsp="http://www.w3.org/ns/ws-policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncrytedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

WS-Policy provides a syntax for expressing policies

Alternative

Compositors

Policy

Assertions

Alternative 1

Alternative 2

6 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

WS-Policy provides operations to work with policies

Policy A

Policy B

intersect

merge

normalize
Policy A´

Policy A

Policy B

Policy A + B

Normalization transforms one policy in a defined format so the following
statements are true:
• Every behavior that is compatible with Policy A is also compatible with Policy A'
• Every behavior that is not compatible with Policy A is also not compatible with
Policy A'
• If two policies A and B describe an identical behavior, their normal form will be
identical (modulo ordering of alternatives and assertions inside alternatives)
Intersection defines an operation that compares two input policies and returns a
policy that contains the common alternatives
Merge is an operation that combines alternatives from two input policies. This
operation is not specified by the standard, but some common implementations
provide it

7 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

8 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy Editor overview

 The policy editor provides two
editor windows:

 The high level editor shows the
complete structure of the policy

 The detail editor shows one
selected policy assertion
together with all attributes

9 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

10 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

 add and remove individual

assertions

11 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The high level editor manipulates the structure of the policy

From the high level editor, you can

 add and remove compositors

 add and remove individual

assertions

 switch to the detail editor to work

with an individual assertion

12 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor
 Similar in look & feel to PDE

Extension Point editor
 Can edit the details of WS-Policy

assertions as well as other types
of XML files that contain
embedded elements.

 Editor dynamically synthesizes a
GUI based on the schema
definition of the policy assertions.

 GUI works with most standard
XML Schema definitions

 Based on XEF (also part of STP)

13 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor – Policy Catalogue
 When editing policies, new

ones can be added from a
Catalogue.

 The catalog has a simple
interface

 Can serve policies from local
filesystem

 Look up catalog in database
 WTP XMLSchema Catalog

integration

14 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details Editor – Features
 Widgets for many XSD data types
 Display names, tooltips
 Context-sensitive help
 Display of defaults values
 Required fields
 Enumerated values
 Password fields
 Representation of xs:choice,

xs:sequence and xs:any
 Much more...

15 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details editor – What is being edited
 You can view/edit the source XML too, could look like this

(WTP XML Editor):

16 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Details editor – Launching
 Current use is primarily embedded in applications, launching is done by

opening an editor by calling IDE.openEditor() with a
 org.eclipse.stp.policy.common.editors.IPolicyDetailEditorInput
or
 org.eclipse.stp.ui.xef.editor.XMLProviderEditorInput
Editor ID: org.eclipse.stp.ui.xef.editor.XefEditor

 For testing there’s the XML XPath View:

 It allows you to specify a policy file, what part in the file needs to be
edited (as XPath), settings and then open the editor

So the XML XPath View is really just a way to open the editor without having to
create an IPolicyDetailEditorInput object

17 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

18 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policies

Summary:

Open the details editor directly, using the XML XPath View, to edit:
 WS-PolicyAttachment file
 Embedded WS-Policies in a WSDL file
 A CXF Configuration file (non-WS-Policy)

19 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policy documents

Exercises:

1.Add a ws-addressing policy to the policy_attachment.xml file
 Use the XML XPath view to edit the policies in policy_attachment.xml
 XPath: //wsp:All

2.Open the provided greeter.wsdl file and change the
retransmission timeout of the WS-RM policy to 70000.
 Use the XML XPath view to edit the policies in greeter.wsdl
 XPath: //*[local-name()='Policy' and namespace-uri()='http://www.w3.org/ns/ws-policy']

3.Edit features in a cxf-features.xml file.

4.Stretch exercise – open the editor from code on a memory object
(which has no file).

20 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial part 1 – editing policy documents
The editor will look like this:

21 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create your own Policy Type

Summary:
 Create your own logging policy definition
 Use the policy
 Make it look nice

22 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create your own Policy Type

Exercise:
Create a new logging policy of which an instance looks like this:
 <acme:Logging xmlns:acme="http://www.acme.com/xsd/2007/08/logging">
 <file filename="mylogfile.log" write_interval="5000" echo="true" />
 </acme:Logging>

 With two sub-elements: console logger and file logger
 File logger has:

 a required field ‘filename’
 echo to screen field (boolean)
 a write interval (default: 10000 ms)

23 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Create a Basic Logging Policy
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xef="http://schemas.eclipse.org/stp/xsd/2006/05/xef"
 xmlns:xefgui="http://schemas.eclipse.org/stp/xsd/2006/05/xef/gui"
 targetNamespace="http://www.acme.com/xsd/2007/08/logging"
 xmlns:tns="http://www.acme.com/xsd/2007/08/logging">
 <xs:element name="Logging">
 <xs:complexType>
 <xs:choice>
 <xs:element name="file" type="tns:fileLoggingType"/>
 <xs:element name="console" />
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="fileLoggingType">
 <xs:attribute name="filename" type="xs:string" use="required"/>
 <xs:attribute name="echo" type="xs:boolean" default="false"/>
 <xs:attribute name="write_interval" type="xs:positiveInteger"

 default="10000" />
 </xs:complexType>
</xs:schema>

24 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Use the new Policy

 Add this logging.xsd to your current Project.
 Edit a policy document, e.g. test.xml
 Add the logging policy
 Add the file subelement

Raw, but functional editor 

The XML XPath view uses all the XSD files in the current project as the schema
catalogue.

The editor created from the raw schema is functional:
•You can add the logging element
•You can add file/console subelements (adherence to xs:choice/xs:sequence)
•Filename is required as per schema
•Echo is a boolean as per schema
•Write_interval is a numeric value as per schema (default visible).

25 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Prettify the new policy in the UI

When every thing works, make it look nice
 Policy in ‘Audit’ category and is called ‘Logging’
 Make sure all labels have nice display names
 Put write_interval in an advanced section
 Add a ‘milliseconds’ unit to write_interval
 Make sure everything has tooltips and documentation

26 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Prettify the UI
Using the XEF reference, add annotations to make the policy look nice:

 The reference guide is also here: http://wiki.eclipse.org/STP/XEF_Reference

Quite a few things have changed here:
•There is documentation with the policy (from <xs:documentation> annotation)
•Elements have display names
•Tool tips
•Write Interval is in an advanced section and units are displayed.
•Echo to screen is a tickbox (instead of a radio button).

Note that the core of the XML-Schema has not changed. This is done with just
extra annotations in it.
The resulting XML file that is being edited is also the same as before, so this is
just improving the usability of the editor.

27 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 2 – Influencing the UI

 An enhanced version with more UI features of this tutorial is
available on the STP Wiki:
http://wiki.eclipse.org/STP/Policy_editor_documentation

 Logging schemas available:
 Basic logging file is called: logging_basic/logging.xsd
 Final logging file is called: logging_full/logging.xsd

28 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Agenda

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies?

 How can you extend the STP policy editor ?
 Exercise 3

29 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policy-driven mechanisms can be used to enhance the
functionality provided by an SOA

• SOA uses a Service Registry to
provide a level of indirection
between the service consumer and
the service provider

• Non-functional properties of
consumers and providers alike can
be specified with policies

The functionality of an SOA can
be enhanced by including policy-
driven negotiation into the
service provider lookup process

30 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

SOA provides a level of indirection between consumer and
provider

Service Registry

ProviderConsumer

publishlook up

call

31 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be integrated in the lookup mechanism

Service Registry

ProviderConsumer

publishlook up

Provider
Policy

Consumer
Policy

call

32 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be integrated in the lookup mechanism

Service Registry

•Alternatives are compared crosswise between policies
•Non-matching alternatives are rejected
•Matching alternatives are included in an “Agreed Policy”

33 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The resulting policy captures the properties that are common
to both participants

•Matching alternatives are included in an “Agreed Policy”

34 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns • Transport selection

• Location-based routing

• Message tracking

35 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns

• Authentication

• Authorization

• Encryption

• Signature

Security aspects

36 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Policies can be used to control a wide range of behavior

Technical concerns

• Response time

• Reliability

• Cost

Security aspects

Quality of service

37 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The policy-driven mechanism enhances SOA functionality in
three important ways

Service Registry

ProviderConsumer

publishlook up

call

The service
lookup ensures
that consumer

and provider are
compatible

The participants don't need to
implement common cross-cutting

functionality

Service calls
are

controlled by
individual
policies

38 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies ?

 How can you extend the STP policy editor ?
 Exercise 3

Agenda

39 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The STP policy editor combines two main contributions

The XEF-based editor was
contributed by IONA

The WTP-based editor was
contributed by SOPERA

40 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The functionality is distributed across several plugins

Eclipse Platform

WTP-based Policy Editor
Plugin

Extension point:
org.eclipse.ui.editors

XEF Policy Editor
Plugin

Extension point:
org.eclipse.ui.editors

STP Policy Common
Bundle

Common interfaces,
Libraries

Policy Model Bundle

WS-Policy based

Policy Generator Bundle

Generation,
 Transformation

Policy Validation Bundle

Validation Framework
based

Neethi EMF Validation Framework

IValidator

Eclipse Platform

STP editor

work in progress

1. WTP-based Policy Editor Plugin: WTP-based editor functionality; policy
alternatives rendering; activation of XEF editor for assertions.

2. XEF Editor Plugin: representation of assertions based on XML schema;
assertion editing and saving; communication with WTP-based editor via
callback interface

3. Common STP Policy Bundle: contains common interfaces
(IPolicyDetailEditorInput); common libraries

4. Policy Model Bundle: implementation of policy model, abstract interface for
Policy Editor (support Neethy, EMF or internal model implementations).
(Neethy, EMF – in progress)

5. Policy Generator Bundle: policy generation and transformation functionality

6. Policy Validation Bundle: ws-policy validator bundle based on Validation
Framework (in progress)

41 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

 What is a policy ?

 How can you work with the STP policy editor ?
 Exercise 1 + 2

 What can you do with policies ?

 How can you extend the STP policy editor ?
 Exercise 3

Agenda

42 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – XEF extension points

Summary:

 Text filters for password fields

 Callback for populating value sets

 Custom field editors

43 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

Plug in filters via
Extension Point:
 <extension
 point="org.eclipse.stp.xef.xefExtension">
 <filter class="org.example.MyFilter"
 filterId="MyFilter" />
 </extension>

XEF Tutorial Part 3 – Text Filters for Passwords
Password fields can use custom filters to process the value:

XSD Attribute Definition:
 <xs:attribute name="lock_password" type="xs:string" use="required">
 <xs:annotation>
 <xs:appinfo>
 <xef:displayName>Lock Password</xef:displayName>
 <xef:filter>MyFilter</xef:filter>
 <xefgui:widget>password</xefgui:widget>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

MyFilter (reverses pwd in document):
package org.example;
import org.eclipse.stp.ui.xef.editor.TextFilter;
public class MyFilter implements TextFilter {
 public String filter(String data) {
 return new StringBuilder(data).
 reverse().toString();
 }
}

44 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Value Proposal Callbacks
 You might want users to select from a prepopulated set of values

Possible through XSD enumeration:
 <xs:attribute name="level" default="Info">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Fatal"/>
 <xs:enumeration value="Error"/>
 <xs:enumeration value="Warning"/>
 <xs:enumeration value="Info"/>
 <xs:enumeration value="Debug"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 Maybe you need a more
dynamic approach, where
possible values are fed from
your application.

45 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Value Proposal Callbacks (impl)
 A more dynamic approach is via a callback, declared in XSD:
 <xs:attribute name="level" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <xefgui:context>
 <xefgui:values>loglevels</xefgui:values>
 </xefgui:context>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

 Realized through an IContextProvider
 IContextProvider myCtxProvider = new IContextProvider() {
 public Object getData(String ctxId) {
 return null;
 }
 public String[] getValues(String ctxId, String ctxFilter) {
 if ("loglevels".equals(ctxId)) {
 return new String [] {"Boring", "Interesting"};
 }
 return null;
 }
 };
 new XMLProviderEditorInput(settings, selectedFile.getProject(),
 new XPathXMLProvider(...), schemaProvider, myCtxProvider),

 Currently only supported via XMLProviderEditorInput
Hopefully in IPolicyDetailEditorInput in Ganymede

There are hooks to re-evalutate the values based on the state of other fields, see
reference guide.

46 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editors

Some field may need their own complex editors
 These can be plugged in via an Extension point
 Example:

47 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editors
XSD Attribute Definition:
 <xs:attribute name="contact_person" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <xef:fieldEditor>nameFieldEditor</xef:fieldEditor>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

Plug in field editor via Extension Point:
• <extension point="org.eclipse.stp.xef.xefExtension">
• <fieldEditor class="org.eclipse.stp.xef.test.MyFieldEditor"
• fieldEditorId="nameFieldEditor">
• </fieldEditor>
• </extension>

48 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

XEF Tutorial Part 3 – Custom field editor impl
public class MyFieldEditor extends AbstractFieldEditor {
 private Text firstName;
 private Text lastName;
 private String result;
 public MyFieldEditor() {
 super(null);
 }
 protected Control createDialogArea(Composite parent) {
 Composite area = (Composite) super.createDialogArea(parent);
 final GridLayout gridLayout = new GridLayout();
 gridLayout.numColumns = 2;
 gridLayout.makeColumnsEqualWidth = false;
 area.setLayout(gridLayout);

 new Label(area, SWT.NONE).setText("First Name: ");
 firstName = new Text(area, SWT.BORDER);
 new Label(area, SWT.NONE).setText("Last Name: ");
 lastName = new Text(area, SWT.BORDER);
 return area;
 }

 protected void okPressed() {
 result = firstName.getText() + " " + lastName.getText();
 super.okPressed();
 }
 public String getFieldText() {
 return result;
 }
 // Some details ommitted, look at the
 // org.eclipse.stp.ui.xef.editor.QNameFieldEditor for a full example
}

49 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

The end

Thank you for your attention

Any questions?

50 Policy Support in Eclipse STP | © 2008 by IONA / SOPERA ; made available under the EPL v1.0

References

 Policy Editor Quick Start
http://wiki.eclipse.org/STP/Policy_Component/Policy_editor_documentation

 XEF Reference Guide
http://wiki.eclipse.org/STP/Policy_Component/XEF_Reference

 Latest info / getting the sources
http://wiki.eclipse.org/STP

 Getting involved
stp-dev@eclipse.org

 WS-Policy Standard
http://www.w3.org/2002/ws/policy/

 Understanding WS-Policy processing
http://www-128.ibm.com/developerworks/webservices/library/ws-policy.html

