openPASS - Content of pull-request for release 0.6

04.07.2019 - Reinhard Biegel

Support of scenario based simulation

 Static instantiation of agents based on systemConfiguration

* Dynamic instantation of agents based on AppConfig (systemConfiguration template), ADAS and sensors are sampled based on probabilistic profiles
* New agent modules for dynamically instantiated agents
* Support of conditional interference during the simulation run via EventDetectors and Manipulators

* New SpawnPoint for scenario based spawning in the World_0SI with randomized spawning of traffic

Update of World_OSI

* Improvement of OpenPassSlave

* Newscheduler
* Various new importers for scenario based simulation

Commit overview Nintech =

* Places agents and static traffic objects in World_OSI

* Initial placement of ego and scenario agents according to Scenario.xml O o ‘ ® -

+ Additional agents are spawned to reach a defined TrafficVolume (Common © scenen © scenery
CaI'S) O Comman O Common

 During runtime additional agents are spawned at start of road B 6

SpawnPoint_0S| Nintech =

* Implementation of Observationinterface

* Responsible for adding RunStatistic information to simulation output

* Modules can access generic ,,Log” method to add their own data to RunStatistics (interim solution until Publish-Subscriber is implemented)
* Logged values are divided into different groups. ExperimentConfig (in CombinationConfig.xml) defines which groups are written to the output

* Qutputis saved as XML-file

ObservationLog Nintech =

* EventDetectors check for conditions defined in Scenario.xosc <Sequence name="StateChangeSequence" numberOfExecutions="1">

<Actors>
 Ifall specified conditions are met an eventis inserted in the <Entity name="TE"/>
EventNetwork </nctors>

<Maneuver name="StateChangeManeuver">
<Event name="StateChangeEvent" priority="overwrite">
<Action name="ComponentStateChange">

* Based on the event a corresponding Manipulator is triggered

« Manipulators have different types and can act on different scopes <UserDelined> _ . .
<Command>SetComponentState DynamicsTrajectoryFollower Acting</Command>
</UserDefined>
</Action>
0Sl use-case example: “StartConditions>
<ConditionGroup>
« EventDetector activates, if SimulationTime > -1 (i.e. in first timestep) <Condét\iimll name="Conditional'>
<ByValue>
« This triggers the ComponentStateChangeManipulator, which sets the) cSimulationine values'-1! rule-'greater_than’ />
. . . . </ByValue>
ComponentState. of the DynamicsTrajectoryFollower in the agent with </Conditions
name ,TF“ to Acting. </ConditionGroup>
</StartConditions>
</Event>
</Maneuver>

</Sequence>

EventDetector and Manipulator Nintech =

Overview of new agent modules

| Algorithm 41
Lateral Lateral Steering
Signal signal
on Dynamics
e - n _-\
Algaorithm 33
\erati 3 Longitudin .
Acteleration e Lengitudinal
Signal Signal \, o | Frioritizer 17
i “| Steering Steering
Signal
Dynamics S
Regular s gv"';"t'z_e"
Diriving amics
Prioritizer
S———3 Lcngitudin 18
al Lengitudinal
Signal
Steering
Prigritizer Algorithm Signal
Lateral 13 Latersl 42
ehicle - Viehicle
Lateral Comp':nent Lateral Guﬂn:nrﬂ'lt
\ehicle Signal Signal Dynam
Component = T'-I' ory —
i ftudi ollower
Acceleratio 21 ooslematio 15 ongitudin 34
n \iehicle > n 3 al\ehide f—a=2touo S
Acceleration| Compenent | Acceleration Vehicle [acceleration
Signal s Signal Compsonent Signal cu'ws rent
\
Nintech

Signalflow

Sensor_Driver

* Reads all dynamicmesoscopic information and information about own vehicle (e.g. velocity) via the Agentinterface and forwards aggregated data to the other
driver modules as SensorDriverSignal

ParametersVehicle

* Reads all staticinformation about the vehicle (i. e. VehicleModelParameters) via the Agentinterface and forwards aggregated data to the other driver modules
as ParametersVehicleSignal

AgentFollowingDriver

* Implementation of a simple driver. Acts based on data from the signals above. Keeps a constant velocity, or adjusts velocity to the carin front
Algorithm_Longitudinal

» Translates the acceleration wish of the driver or a vehicle component into gear and pedal positions

Algorithm_Lateral

» Translates intended lateral deviation of the driver or a vehicle componentinto a steeringwheel angle

Driver modules Nintech =

* This module is an example foran ADAS in openPASS
* Itimplements a simple autonomous emergency braking (AEB) logic

» Ifthe predicted time to collision (TTC) to another object is below a specified threshold, braking with constant deceleration is triggered

Algorithm_AEB Nintech =

Sensor_0SI

» The Sensor_0SI module represents different types of sensors based on the 0SI-groundtruth

* The output of Sensor_0Sl is OSI SensorData

* Geometric2D-sensoris given as an example implementation of an OSI based sensor

» The Geometric2D-sensor acts as a 2D radar, detecting moving and stationary objects inside a circular sector

* Detection considering visual obstruction is supported
SensorFusion_0SI

» The SensorFusion consolidates SensorData of multiple OSI-sensors into a single SensorData structure

¢ The combined SensorData is forwarded to all ADAS

Sensor_0SI and SensorFusion_0SI Nintech =

* The module is responsible for calculating the vehicle dynamics

Pedal positions, steeringwheel angle and the current gear are translated into new values (velocity, acceleration and position) considering the vehicle‘s
physical parameters

 Calculated data is forwarded as DynamicsSingal

Dynamics_RegularDriving Nintech =

* Incase a collision occured, Dynamics_Collision takes over the calculation from Dynamics_RegularDriving
* Collisions are modeled as simple inelastic collisions
» Afterthe collision, Dynamics_Collsion decelerates the agent with a constant value of 10m/s2

* Analogous to the Dynamics_RegularDriving module, calculated values are forwarded as DynamicsSignal

Dynamics_Collision Nintech =

» This module can be used to force an agent to follow a predefined trajectory
» The agents position is set, velocity and acceleration is calculated based on the given trajectory provided by a CSV-file
 Trajectories can eitherbe given in world coordinates or in absolute or relative road coordinates

* Dynamics_TrajectoryFollower can either be dominant (enforcing the trajectory) or submissive (trajectory can be overruled by an ADAS)

Dynamics_TrajectoryFollower Nintech =

Since a signal of a specific type can be created by different modules simultaniously, it's necessary to prioritize one of those signals before allowing
consumption by a follow-up module

* Priority lists are used to decide which signal gets forwarded

* Examples:

The DynamicSignal can originate from the Dynamics_RegularDriving, the Dynamics_Collision or the Dynamics_TrajectoryFollower. The Dynamics_Collision
has the highest priority and the Dynamics_RegularDriving has the lowest priority

Different ADAS can output an AccelerationSignal and a SignalPriotizer is used to decide which ADAS gets prioritized

SignalPrioritizer Nintech =

The AgentUpdater calls setter-functions of the Agentinterface for all values of the DynamicsSignal

AgentUpdater Nintech =

The Sensor_RecordState logs all basic agent based informations (e.g. agentlD, velocity, position) via the ObservationLog

Sensor_RecordState Nintech =

The VehicleControlUnit (VCU) is used to configure and handle dependencies between vehicle components

* The responsibilities of the VCU are:

* Handling of all dependencies in case a component wants to activate
* Make information about driver, Dynamics_TrajectoryFollower and other vehicle components available to each other
» Determine the highest allowed activation state of a component and notify the affected component about this state

* To achieve this tasks, each componentis assigned a maximum allowed state in each timestep. This state is of type ComponentState, which defines Disabled,

Armed or Active as allowed states.

 Drivers can be in a state of either Active or Passive.

Vehicle Control Unit (VCU) Nintech =

