
Java Metadata Interface

© 2006 LIP6!1

A presentation of JMI

Java Metadata Interface

LIP6, Laboratoire d'Informatique de Paris 6
8, rue du Capitaine Scott

75015 Paris, France
http://www-src.lip6.fr/homepages/Marie-Pierre.Gervais

http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php
http://www.modelware-ist.org/bb2Forum/index.php

Java Metadata Interface

© 2006 LIP6!2

Context of this work

• The present courseware has been elaborated in the context of
ModelWare European IST FP6 project (http://www.modelware-ist.org/)
• The MODELWARE project (Modelling solution for software systems)

brings together 19 partners from Europe and Israel. Its main objectives
are to develop a solution to reduce the cost of software systems large-
scale deployment by the means of Model Driven Development
techniques.

• To achieve the goals of large-scale dissemination of MDD techniques,
ModelWare is also promoting the idea of collaborative development of
courseware in this domain.
• The MDD courseware provided here with the status of open source

software is produced under the EPL 1.0 licence.

http://www.modelware-ist.org/bb2Forum/index.php

Java Metadata Interface

© 2006 LIP6!3

Outline

• Overview of the standard

• The JMI interfaces categories

• The reflective interfaces
• Translation rules
• An exemple : the Use Case Diagram

• The tailored interfaces
• Translation rules
• An exemple : the Use Case Diagram

Java Metadata Interface

© 2006 LIP6!4

Rationale

• A model is an abstract entity
• A model is structured by its metamodel
• A metamodel is an abstract entity
• A metamodel is structured by MOF
• MOF is an abstract entity!

• To handle (meta*)models, they need to be
represented in an electronic format

Java Metadata Interface

© 2006 LIP6!5

Java Model Interface

• Defined by JCP (Java Community Process)

• Enable to represent models in the form of Java
objects

• Defines rules enabling to build Java interfaces from a
metamodel
• JMI1.0 (final release, 28 June 2002) applies to MOF1.4

Java Metadata Interface

© 2006 LIP6!6

JMI: principle

metamodel

models

Java Interface

Java Objects

Java Metadata Interface

© 2006 LIP6!7

JMI

• Java API for handling models
• Interfaces providing operations

• Develop a CASE tool for handling a model = develop a
program using (invoking) the API

Java Metadata Interface

© 2006 LIP6!8

The JMI Interfaces

• Two categories
• Reflective
• Provides means to dynamically discover information on a model

element (i.e., access to its meta-class)
•Usable for all types of models
• Independent from the metamodel

• A model is a set of linked model elements, instances of meta-classes

• Tailored
•Dedicated to a type of models (models that are instances of the

same metamodel)
•Depending on the structure of this type of models (i.e., depending

on the metamodel)

Java Metadata Interface

© 2006 LIP6!9

The Reflective Interfaces

Java Metadata Interface

© 2006 LIP6!10

RefBaseObject

• Represents any element (of a model or of a
metamodel)

• Offers the refMetaObject() operation
• Returns the metaclass of the element
• Type of the metaclass : refObject (inherits from
RefBaseObject)
• Enables the navigation to the meta levels for discovering the

structure of models.

Java Metadata Interface

© 2006 LIP6!11

RefFeatured

• Specialization of RefBaseObject
• Offers operations to access the element properties
• Attribute, reference, operation

• refGetValue() and refSetValue() operations
• Read and Write the property value
• Signatures:
• void refSetValue(String propName, Object propValue)
• Object refGetValue(String propName)

• Input parameter propName: a string identifying the property

Java Metadata Interface

© 2006 LIP6!12

RefClass

• Specialization of RefFeatured

• Represents the notion of element factory
• Enables to build instances of a metaclass

• There is a RefClass per a metaclass

• Offers the refCreateInstance() operation
• Creation of an instance of a metaclass

Java Metadata Interface

© 2006 LIP6!13

RefObject

• Specialization of RefFeatured

• Represents the notion of an element that is an
instance of a metaclass

• Offers the refIsInstance() operation
• Check whether this element is the instance of a given metaclass

Java Metadata Interface

© 2006 LIP6!14

RefAssociation

• Specialization of RefBaseObject

• Represents the notion of links between elements (i.e.
RefObjects)

• Offers the refAddLink()and
refRemoveLink()operations
• Add and Remove links between elements

Java Metadata Interface

© 2006 LIP6!15

RefPackage

• Specialization of RefBaseObject

• Represents the notion of package (container of
metaclasses).

• Offers the refGetClass() operation
• List of the metaclasses (RefClass) contained in the package

Java Metadata Interface

© 2006 LIP6!16

Example : the Use Case Diagram (UCD)

Construction of a model M
(instance of a metamodel)

Java Metadata Interface

© 2006 LIP6!17

The UCD metamodel and the model M

A model M
compliant to
UCD

The UCD metamodel

case

Java Metadata Interface

© 2006 LIP6!18

Construction of the model M

• With the reflective interfaces (without generating the
metamodel-specific API)
• Writing the program that creates the model by using directly

the operations of the reflective interfaces
• Need the implementation of the reflective interfaces (such as

ModFact*, MDR*)
• Bootstrapping application (i.e. obtaining the instance of RefPackage):

implementation-specific mechanism

* See references

Java Metadata Interface

© 2006 LIP6!19

Construction of the model M

[1] RefPackage p = //proprietary mechanism  
[2] RefObject act =
 p.refClass("Actor").refCreateInstance(null);  
[3] act.refSetValue("name","Client");  
[4] RefObject ca1 = p.refClass("UseCase").refCreateInstance(null);  
[5] ca1.refSetValue("title","CartOrder");  
[6] RefObject ca2 = p.refClass(" UseCase").refCreateInstance(null);  
[7]ca2.refSetValue("title","CartValidation");  
[8]Collection col = (Collection) act.refGetValue("participate");  
[9]col.add(ca1);  
[10]col.add(ca2);  
[11]RefObject sys = p.refClass("System").refCreateInstance(null);  
[12]sys.refSetValue("name","PetStore");  
[13]Collection cas = (Collection) sys.refGetValue("case");  
[14]cas.add(ca1);  
[15]cas.add(ca2);

Java Metadata Interface

© 2006 LIP6!20

The Tailored Interfaces

•Offer dedicated operations for handling
models that are instances of a particular
metamodel

•Example : operations for handling UCD
models (instances of the UCD metamodel)

Java Metadata Interface

© 2006 LIP6!21

Navigation

• The tailored interfaces generated for the UCD
metamodel enable, for each UCD model:
• To get the number of actors, use cases, systems
• To get the name of an actor (of a use case, of a system) and to

modify it
• To get the inheritance links between actors and to modify them
• To get the use cases in which an actor participates and to

modify them
• To add/remove a use case
• …

Java Metadata Interface

© 2006 LIP6!22

Generation Rules

• JMI1.0 defines the taylored interfaces generation
from MOF1.4 metamodels

• Presentation of
• Metaclass Rule
• Meta-association Rule
• Metapackage Rule

Java Metadata Interface

© 2006 LIP6!23

The metaclass Rule

• For a metaclass of a metamodel : 
TWO interfaces

• Instance Interface
• Offers the operations to read/modify the instances of the

metaclass

• Factory Interface
• Offers the operations to create the instances of the metaclass

Java Metadata Interface

© 2006 LIP6!24

The Instance Interface

• Its name = name of the metaclass

• Offers the get/set operations for each meta-
attribute of the metaclass
• Ex. Setting the name of an Actor.

• Offers the operations of navigation for each
metareference of the metaclass
• Ex. Navigating from a UseCase to an Actor.

• Specialization of the reflective interface RefObject

Java Metadata Interface

© 2006 LIP6!25

The Factory Interface

• Its name : name_metaclassClass

• Offers the operations to create instances of the
metaclass
• Ex. Creating instances of Actor.

• Specialization of the reflective interface RefClass

Java Metadata Interface

© 2006 LIP6!26

The Meta-association Rule

• For a meta-association of a metamodel :  
ONE interface (Meta-association interface)
• Its name = name of the meta-association
• Offers the operations to create links between the instances of

metaclasses
• Ex. Linking the instances I1 and I2 with the meta-association A1.

• Offers the operations to navigate through the links
• Ex. Obtaining I2 from I1.

• Specialization of the reflective interface RefAssociation

Java Metadata Interface

© 2006 LIP6!27

The Metapackage Rule

• For a package of a metamodel :  
ONE interface (Package interface)
• Its name = package name + suffix "Package"
• Ex. "Ucd" + "Package" ! UcdPackage

• Offers the operations enabling to get all the Factory interfaces of
the metaclasses in this metapackage
• Ex. Getting Factories for the metaclasses Usecase, System, Actor.

• Offers the operations enabling to get all the Meta-association
interfaces of this metapackage
• Ex. Getting Assocation interfaces for the meta-associations "include",

"extend".

• Specialization of the reflective interface RefPackage

Java Metadata Interface

© 2006 LIP6!28

Example: the Use Case Diagram (UCD)

Generation of the tailored interfaces
Construction of the model M

Java Metadata Interface

© 2006 LIP6!29

List (1): Results of Metaclass Rule

• Actor.java
• Generated from the metaclass Actor (Instance interface).
• provides the operations: getName(), setName(), getParticipate()

• ActorClass.java
• Generated from the metaclass Actor (Factory interface).
• provides the operation: createActor()

• System.java
• Generated from the metaclass System (Instance interface).
• provides the operations: getName(), setName(), getUseCase()

• SystemClass.java

• Generated from the metaclass System (Factory interface).
• provides the operation: createSystem()

• UseCase.java
• Generated from the metaclass UseCase (Instance interface).
• provides the operations: getTitle(), setTitle(), getInclude(),
getExtend()

• UseCaseClass.java
• Generated from the metaclass UseCase (Factory interface).
• provides the operation: createUseCase()

Java Metadata Interface

© 2006 LIP6!30

List (2) : Results of Meta-association Rule

• AUseCaseSystem.java
• Generated from the meta-association between the metaclasses
UseCase and System.

• AInheritActor.java
• Generated from the meta-association on the metaclass Actor (an

Actor inherits another Actor).
• AParticipateActor.java
• Generated from the meta-association between the metaclasses
Use Case et Actor (an Actor participates in a UseCase).

• AIncludeUseCase.java
• Generated from the meta-association on the metaclass Use Case

(A UseCase includes another UseCase).
• AExtendUseCase.java
• Generated from the meta-association on the metaclass Use Case

(A UseCase extends another UseCase).

Java Metadata Interface

© 2006 LIP6!31

List (3) : Result of Metapackage Rule

•UcdPackage.java
•Generated from the metapackage containing all these

metaclasses and meta-associations.
•Has the following operations:
• Getting all Factory interfaces:
• SystemClass getSystem()
• UseCaseClass getUseCase()
• ActorClass getActor()

• Getting all Meta-association interfaces:
• AUseCaseSystem getAUseCaseSystem();
• AInheriteActor getAInheriteActor();

• …..

Java Metadata Interface

© 2006 LIP6!32

Construction of the model M

[1]UcdPackage extent = //proprietary mechanism
[2]System sys = extent.getSystem().createSystem("PetStore");
[3]Actor ac = extent.getActor().createActor("Client");
[4]UseCase ca = extent.getUseCase ().createUseCase ("CartOrder");
[5]UseCase ca2 =

extent.getUseCase() .createUseCase("CartValidation");
[6]ac.getParticipate().add(ca);
[7]ac.getParticipate().add(ca2);
[8]sys.getUseCase().add(ca);
[9]sys.getUseCase().add(ca2);

Java Metadata Interface

© 2006 LIP6!33

References

•White Papers
• http://java.sun.com/products/jmi/

• Download JMI
• http://java.sun.com/products/jmi/download.html
• http://packages.debian.org/unstable/libs/libgnujmi-java

• Repository
• http://mdr.netbeans.org
• http://modfact.lip6.fr

