
Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 1

Applications Of
Model Weaving Techniques

Hugo Bruneliere, Jendrik Johannes

INRIA, TUD  

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 2

Context of this work

• The present courseware has been elaborated in the context of the
MODELPLEX European IST FP6 project (http://www.modelplex.org/).
• Co-funded by the European Commission, the MODELPLEX project

involves 21 partners from 8 different countries.
• MODELPLEX aims at defining and developing a coherent

infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems within a
variety of industrial domains.
• To achieve the goal of large-scale adoption of MDE, MODELPLEX

promotes the idea of a collaborative development of courseware
dedicated to this domain.
• The MDE courseware provided here with the status of open-source

software is produced under the EPL 1.0 license.

http://www.modelplex.org/

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 3

Outline

• Introduction

• Model Weaving with AMW
• Principles
• The AMW project
• Concrete applications (use cases)

• Weaving in Aspect-Oriented Modeling with Reusware
• Principles
• The Reusware Composition Framework
• Concrete applications (use cases)

• Conclusion

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 4

Introduction
• It is often necessary to establish relationships between elements of

different models, for several reasons

• Current MDE solutions focus on the support of model transformations
• Designed to execute automatic operations
• Transformations are typically general purpose languages

• Depending on the application scenario, the relationships have a different
interpretation
• The relationships should be stored or modified

a1 b1
a2

a3
b2

Ma Mb

Traceability , transformation production ,
merging , aspect oriented modeling (AOM), etc.

Relationships used in many
application scenarios

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 5

Introduction

• What is the form and semantics
 of the relationships?
• Cardinality
• Traceability, merging, equality,
 annotation, etc.
• The relationships should not modify
 the related models

• How these relationships will be created?
• Manually, automatic, with graphical or textual interfaces

• How to use these relationships?
• To trace, to merge, to interoperate, to annotate

!A complete workbench must be customizable according
to different application requirements
• Adaptive mechanisms should be plugged as needed

a1 b1
a2

a3
b2

Ma Mb

- What r1 means?
 a = b? a is derived from b ?, etc.
- How r1 is created?
- What do we do with r1?

r1

r2

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 6

Model Weaving with AMW

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 7

AMW Principles: model weaving

• AtlanMod Team (INRIA) solution to capture
relationships between model elements
• Relationships are reified in a weaving model
• The model elements represent the relationships and the related

elements
• As any kind of model, the weaving model can be saved, stored,

transformed, modified

a1 b1

a2

a3
b2

Ma Mb

r1

Weaving model

r2

b1a1

b2

a2

a3

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 8

AMW Principles: weaving metamodel

•A weaving model conforms to a weaving metamodel
•Defines the nature of the relationships that can be

created
•Cardinality (1-*, *-*, *-1)
•Semantics of the relationships

•However, it is not practical to define a weaving
metamodel that supports all kinds of relationships
•For instance, a traceability relationship is not useful in

a merging scenario

•The weaving metamodel is extensible
•We define an core weaving metamodel

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 9

AMW Principles: core weaving metamodel

•Supports basic link management

-name : String
-description : String

WElement

WModel
-ref : String
WRef

WLinkEnd
WModelRef WElementRef

WLink

m
od

el

ownedElement (1-*)

ownedElementRef(0-*)modelRef

end (1-*)

lin
k

element

parent

ch
ild

 (0
-*

)

wovenModel (1-*)

Linking
semantics

Namespace
semantics

(one link has
N endpoints)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 10

AMW Principles: weaving metamodel extension

• Core is extended with different kinds of
relationships

•Merging
(merge, override, inherits)

•Interoperability
(translate, concatenate)

•Traceability
(A generates B)

•AOM
(A executesAfter B)

Core metamodel

Ext1 Ext2 ExtN
…

Ext11

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 11

AMW Principles: creation of model weaving using matching

•Automatic
•Execution of matching heuristics
•Exploit the properties of the model elements to calculate a

similarity measure between them
•Typically dependent of the weaving metamodel extensions
•Generic heuristics can be implemented based on the elements of

the core metamodel
• Customized heuristics are used to obtain better results

•Execution trace
•A weaving model is created to save the execution trace of a

transformation

•Manual
•User interface

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 12

AMW Principles: various uses

• Traceability
•Weaving models keep track of the source elements used to generated a set

of target elements

• Transformation production
• The model elements are used as specification to produce general purpose

transformations
•Higher-order transformations translate weaving models into transformation

models

• Annotations
• The weaving model contains extra information used to annotate model

elements

• Merging
• The weaving model is used as input to merge algorithms

• Metamodel comparison
• The weaving model is used to compare different models

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 13

The AMW Project: website homepage

• Available under Eclipse.org (Modeling/GMT project)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 14

The AMW Project: plugins

• Supports the three main issues presented:

•Which relationships to create
•Weaving metamodel extensions

•How to create them
•Creation of weaving models using matching transformations

integrated in the user interface

•For what (utilization)
•Visualization, storage, modification, execution of

transformations

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 15

The AMW Project: plugins

•Adapts to any weaving metamodel extension
•The user interface is automatic generated according

to the metamodel extensions
•Reflective API of EMF (Eclipse Modeling Framework)

•A set of extension points is defined to enable
to customize the standard user interface
•Extension points to the panels, to the model

elements, and to execute model transformations in
ATL (AtlanMod Transformation Language)
•New interfaces can be easily developed

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 16

The AMW Project: user interface

Adaptive
interface

Identification
mechanism

Plugged panels

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 17

The AMW Project: matching

• An extension point enables to plug different matching
heuristics

•Implemented with ATL transformations

•The transformations have a fixed signature
•Input: weaving model, left model, right model
•Output: weaving model

•The menus are automatically generated

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 18

The AMW Project: provided set of matching transformations

• Typed Cartesian product
• Data types and conformance
• Cardinality
• Name similarity
• Name equality
• Similarity flooding
• Handles inheritance, containment and reference trees

• Model information
• Selection methods
• Best values, based on a threshold

! These transformations can be executed sequentially, or
combined

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 19

The AMW Project: use cases available (project’s website)

• Traceability

• Transformation production
• Tool interoperability, data integration

• Matching

• Model alignment

• Metamodel comparison

• Aspect oriented modeling

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 20

AMW Use Case: abstract representation of ATL

• ATL Transformation

•Textual syntax
• Defines a complete transformation from a set of

source into a set of target models

•Issues
•How to have a global view of the transformation?
•How to easily develop ATL transformations

without much previous knowledge on the language?

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 21

AMW Use Case: abstract representation of ATL

• Simple “Families-to-Persons” example

rule Member2Male {
from

s : Families!Member (not s.isFemale())
to

t : Persons!Male (
fullName <- s.firstName + ' ' + s.familyName

)
}

rule Member2Female {
from

s : Families!Member (s.isFemale())
to

t : Persons!Female (
fullName <- s.firstName + ' ' + s.familyName

)
}

Rule
Input pattern

Output pattern

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 22

AMW Use Case: abstract representation of ATL

• Deal with simple ATL

•Weaving metamodel extension that enables to
graphically develop ATL transformations

•Extension close to the ATL metamodel
•But in a higher abstraction level

! The skeleton of the transformation can be
then automatically generated

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 23

AMW Use Case: abstract representation of ATL

•Weaving metamodel extension for ATL:

• Module
• Input and output models
• Rules
• Input element
• (some condition)

•Output element
• Some bindings
• Simple bindings
• Complex bindings

• A weaving model captures these different kinds of
relationships in an abstract representation

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 24

AMW Use Case: abstract representation of ATL

• A HOT transforms the weaving model (i.e. the
abstract specification of the transformation) into an
ATL model
•The transformation Mt can be refined, or directly

executed (if correct)

MMw

Mw Mt

c2

c2

Transforms

MMt

HOT

c2

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 25

AMW Use Case: abstract representation of ATL

• Process to follow step by step

•Define a metamodel extension

•Create a new weaving model using the AMW wizard
•Select the correct extension
•Select the correct parameters

•Create the weaving links

•Produce a transformation model

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 26

AMW Use Case: traceability in model transformations

• A weaving model stores the execution traces of an
ATL transformation

•The behavior of the initial transformation is not
modified

•The weaving model is generated automatically when
the transformation is executed
•Produced as an additional output of the tranformation

• Details available from: http://www.eclipse.org/gmt/amw/
usecases/traceability/

http://www.eclipse.org/gmt/amw/usecases/traceability/
http://www.eclipse.org/gmt/amw/usecases/traceability/

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 27

AMW Use Case: traceability in model transformations

• Class-to-Relational

MMa MMb

Source
model

Target
model

MMt

Mt

c2 c2 c2

Transforms

rule ClassAttribute 2Column {
from
a : Class!Attribute (

a.type.oclIsKindOf (Class!Class)
and not a.multiValued

)
to
foreignKey : Relational !Column (
name <- a.name + 'Id',
type <- thisModule .objectIdType

)
}

name = Person
se : Attribute

name = PersonID
type = Integer

te : Column

•Traceability

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 28

AMW Use Case: traceability in model transformations

• Traceability weaving model

•Mt (Class to Relational) is used to produce Mt’
•Generated automatically: ATL2WTracer.atl

•Mt’ generates a weaving model and the relational model
•The weaving model is opened in the AMW tool

Class

Relational

Mt’

Mw

IN
OUT

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 29

AMW Use Case: traceability in model transformations

•Weaving metamodel extension

class TraceLink extends WLink{
 attribute ruleName : String;

 reference sourceElements[*] ordered container : WLinkEnd;
 reference targetElements[*] ordered container : WLinkEnd;
}

class TraceLinkEnd extends WLinkEnd {
}

class ElementRef extends WElementRef {
}

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 30

AMW Use Case: traceability in model transformations

• Process to follow step by step

•Define a metamodel extension

•Produce a modified Class2Relational transformation

•Execute this transformation
•This transformation produces a weaving model and a

relational model

•Open it in the AMW tool

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 31

AMW Use Case: generic matching

• Creation of weaving models

• Automatic
•Execution of matching heuristics
•Exploit the properties of the model elements to calculate a

similarity measure between them
•Typically dependent of the weaving metamodel extensions
•Generic heuristics can be implemented based on the

elements of the core metamodel
• Customized heuristics are used to obtain better results

• Manual
•User interface

• Used in different use cases:

 http://www.eclipse.org/gmt/amw/usecases/matching/

http://www.eclipse.org/gmt/amw/usecases/matching/

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 32

AMW Use Case: generic matching

• Different kinds of links

Date BirthDate Date = Day / Month / Year
String similarity

Descr Description

Car Automobile
Dictionaries of Synonyms

Professor Teacher

Structural features
Class Table

name name
Since Class and Table has a
sub element name,
they are considered similar.

Name = FirstName + LastName

Dollar = Euro x ConvertionRate

Format compatibility

Concatenation

Data conversions

- Direct links - Complex links

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 33

AMW Use Case: generic matching

• General overview

MMbMMa

Matching
transformation 1

Matching
transformation 2

Matching
transformation n

IN

Weaving
model

IN

OUT
Weaving
model

IN

OUT

Automatic

Adaptive UI

Manual

Weaving
model

OUT

extensions on the UI

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 34

AMW Use Case: generic matching

• AMW supports matching

•An extension point enables to plug different
matching heuristics

•Implemented with ATL transformations

•The transformations have a fixed signature
•Input: weaving model, left model, right model
•Output: weaving model

•The menus are automatically generated

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 35

AMW Use Case: generic matching

• Use the provided set of matching transformations

• Typed Cartesian product
• Data types and conformance
• Cardinality
• Name similarity
• Name equality
• Similarity flooding
•Handles inheritance, containment and reference trees

• Model information
• Selection methods
•Best values, based on a threshold

! These transformations can be executed sequentially, or combined
! The transformations interpret specific metamodel extensions

! This procedure is used in several use cases (see the next “metamodel
comparison” use case)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 36

AMW Use Case: metamodel comparison & model migration

• Metamodels need to be compared for several reasons

•One important reason is to discover the equivalent
elements between two versions of a metamodel

•Different utilisations

•Migrate one model to another

•Apply metamodel difference

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 37

AMW Use Case: metamodel comparison & model migration

• General overview

MMs(v1)

Source
model

Target
model

c2 c2

MMs(v2)

MMs(v1)

Source
model

Target
model

MMw

Mw

c2

c2

c2

MMs(v2)

1) Two versions of
similar metamodels

2) A set of transformations produces a
weaving model between the metamodels

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 38

AMW Use Case: metamodel comparison & model migration

• General overview (comparison and model migration)

MMs(v1) MMs(v2)

Source
model

Target
model

c2 c2

Transforms

3) The weaving model is
translated in a model
transformation

MMw

Mw

MMt

Mt

c2c2

4) The source model is transformed into
the target model .

Translates

MMt

Mt

c2

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 39

AMW Use Case: metamodel comparison & model migration

•Weaving metamodel extension
abstract class Equivalent extends WLink {
 attribute similarity : Double;
 reference left container : ReferredElement;

 reference right container : ReferredElement;
}

abstract class Equal extends Equivalent {
}
class ElementEqual extends Equal {

}
class AttributeEqual extends Equal {
}

class ReferenceEqual extends Equal {
}
class NotEquivalent extends WLink {

 reference left container : ReferredElement;
 reference right container : ReferredElement;

}
class ReferredElement extends WLinkEnd {
}

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 40

AMW Use Case: metamodel comparison & model migration

• Process to follow step by step

•Definition of the metamodel extension

•Creation of a weaving model (comparison model)

•Parameterization and execution of the matching
transformations to refine the comparison model

•Generation of an ATL transformation

•Application of the generated transformation for
model migration

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 41

The AMW Technology: conclusions

• Model weaving
•Weaving models reify relationships between model elements

from different models
• Several application scenarios
•An extensible metamodel is essential

•Weaving models are stored, transformed, modified

• AMW is a flexible model weaving plug-in
•Weaving metamodels extensions in KM3
•Adaptive user interface
•No need to develop a new tool for each application scenario

• ATL transformations are plugged as needed
•Matching transformations
•Higher-order transformations

• Several examples available

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 42

Weaving in Aspect-Oriented Modeling with Reuseware

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 43

Reuseware Principles

• Reuseware is...
• A language independent modularisation approach [1]
• A framework: Reuseware Composition Framework [2]

• Common concepts for different  
composition systems for arbitrary languages
• Easy specification of new composition techniques and porting of

techniques from one language to another
• Reuse of composition tooling
• Tailor tooling for composition system and language

• Support features of aspect-oriented systems
• Support homogeneous cross-cuts (and quantification)
• Support heterogeneous cross-cuts

[1] On Language-Independent Model Modularisation,Transactions on Aspect-Oriented Development, 2008
[2] http://reuseware.org

http://reuseware.org

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 44

Reuseware Principles - Core Concepts

•Model Fragments
• (Partial) models that may contain variation points
• Offer a Composition Interface
• Composition Interface consists of Ports
• Ports point at elements of the model fragment that can be

accessed for composition
• One Port can point at several elements at arbitrary places in the

model fragment (heterogeneous crosscut)
• Similar Ports can be joined to one HomogeneousPort (homogeneous

crosscut)

• Composition Programs
• Define composition links between Ports
• Are executed to produce a composed model where model fragments

are woven at the elements pointed out by the linked Ports

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 45

Reuseware Principles - Core Concepts

• Composition Systems
• Define modularisation concepts 

(e.g., Modules, Packages, Aspects)
• Define relations between modularisation concepts 

(e.g, an aspect relates to a core)

• Reuse extensions (for a particular language)
• Define how modularization concepts defined in a 

composition system are realized in a concrete language
• Define which ports are related to which model elements  

of a model fragment

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 46

Reuseware Composition Framework

• CoMoGen (Reuseware SDK)
• Enables developers to define new composition systems
• Addition to other language engineering (metamodelling /DSL)

tools to define modularisation aspect of a language

• CoCoNut (Reuseware Runtime)
• Provides language independent composition engine
• Provides language independent component repository
• Provides language independent composition program editor

• Composition systems defined with CoMoGen plug into CoCoNut
and tailor the above functionality

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 47

CoMoGen (Reuseware SDK)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 48

CoMoGen (Reuseware SDK)

Reuseware builds on EMF and
works together with other
EMF-based tools

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 49

CoMoGen (Reuseware SDK)

Reuseware builds on EMF and
works together with other
EMF-based tools

Metamodeling tools can be
used to define a language and
tools for the language 
(examples are shown here)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 50

CoMoGen (Reuseware SDK)

Reuseware builds on EMF and
works together with other
EMF-based tools

With CoMoGen, model
composition systems can be
modelled based on a prior
defined metamodel

Metamodeling tools can be
used to define a language and
tools for the language 
(examples are shown here)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 51

CoCoNut (Reuseware Runtime)

Reuseware builds on EMF and
works together with other
EMF-based tools

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 52

CoCoNut (Reuseware Runtime)

Reuseware builds on EMF and
works together with other
EMF-based tools

The three language-
independent features of
CoCoNut can be used with
every composition system

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 53

CoCoNut (Reuseware Runtime)

Reuseware builds on EMF and
works together with other
EMF-based tools

The three language-
independent features of
CoCoNut can be used with
every composition system

Specific composition systems
defined with CoMoGen plug
into CoCoNut

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 54

Reuseware Use Case: Class Weaving

• Demonstrates CoMoGen Features
• How to define a concrete composition system
• How to use the composition system with different language

• Demonstrates CoCoNut Features
• Using the composition program editor
• Using the model fragment repository
• Using the composition engine

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 55

Reuseware Use Case: Class Weaving

• Based on Class Concept found in many languages
• A Class usually has operations, properties and references to other

classes and is contained in a package

• Weaving Class A+ (Advice) into Class A means:
• All operations, properties and references of A+ are added to A
• if any of the new elements of A points at a class B+ which is woven into

another class B, the pointers are redirected to B
• Classes that are not source of a weaving should be copied completely

A+
prop
AopA()

B+
prop
BopB()

refA

A

B

weave

weave

Model fragments + weaving description Woven (composed) Model

A
prop
AopA()

B
prop
BopB()

refA

P+

C
prop
CopC()

P

C
prop
CopC()

P

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 56

Reuseware Use Case: ClassWeaving Composition System

• A composition system defines
• Fragment roles
• Role a model fragment plays in the modularisation  

(e.g., aspect or core)
• Fragment roles collaborate through associations between ports

• Static ports
• Defined for one fragment role
• Each fragment playing the role has to offer the port

• Dynamic ports
• Defined for one fragment role
• Each fragment playing the role can offer several of these ports

• Contribution Associations
• Defines that two ports are related
• Executing a composition link between the two ports will trigger  

the copying of model elements
• Configuration Associations
• Defines that two ports are related
• Executing a composition link between the two ports will NOT trigger  

the copying of model elements

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 57

Reuseware Use Case: ClassWeaving Composition System

compositionsystem ClassWeaving {

 fragment role Core {
 static port Container;
 dynamic port Classes;
 }

 fragment role Aspect {
 static port Content;
 dynamic port Advices;
 }

 contribution Aspect.Content --> Core.Container;

 contribution Aspect.Advice --> Core.Class;
}

A Core acts as container for
additional content (Container); it
contains Classes which should be
individually accessible for
extension (therefore the number
of ports is dynamic - it depends on
the number of existing classes)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 58

Reuseware Use Case: ClassWeaving Composition System

compositionsystem ClassWeaving {

 fragment role Core {
 static port Container;
 dynamic port Classes;
 }

 fragment role Aspect {
 static port Content;
 dynamic port Advices;
 }

 contribution Aspect.Content --> Core.Container;

 contribution Aspect.Advice --> Core.Class;
}

A Core acts as container for
additional content (Container); it
contains Classes which should be
individually accessible for
extension (therefore the number
of ports is dynamic - it depends on
the number of existing classes)
An Aspect offers additional
Content; it contains Advices as
extensions for classes which should
be individually accessible

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 59

Reuseware Use Case: ClassWeaving Composition System

compositionsystem ClassWeaving {

 fragment role Core {
 static port Container;
 dynamic port Classes;
 }

 fragment role Aspect {
 static port Content;
 dynamic port Advices;
 }

 contribution Aspect.Content --> Core.Container;

 contribution Aspect.Advice --> Core.Class;
}

A Core acts as container for
additional content (Container); it
contains Classes which should be
individually accessible for
extension (therefore the number
of ports is dynamic - it depends on
the number of existing classes)
An Aspect offers additional
Content; it contains Advices as
extensions for classes which should
be individually accessible
A Content contributes to a
Container

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 60

Reuseware Use Case: ClassWeaving Composition System

compositionsystem ClassWeaving {

 fragment role Core {
 static port Container;
 dynamic port Classes;
 }

 fragment role Aspect {
 static port Content;
 dynamic port Advices;
 }

 contribution Aspect.Content --> Core.Container;

 contribution Aspect.Advice --> Core.Class;
}

A Core acts as container for
additional content (Container); it
contains Classes which should be
individually accessible for
extension (therefore the number
of ports is dynamic - it depends on
the number of existing classes)
An Aspect offers additional
Content; it contains Advices as
extensions for classes which should
be individually accessible
A Content contributes to a
Container

An Advice contributes to a Class

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 61

Reuseware Use Case: ClassWeaving Reuse Extensions

• A Reuse Extension defines
• How a composition interface define by a fragment role (which is

defined in a composition system) is linked to the content of a
model fragment
• Each port links to a set of model elements treated as:
• Prototype: Element that can be copied with its contained elements
•Anchor: Element that can be referenced by other elements

•Hook: Variation point where Prototypes can be put
• Slot: Variation point where Anchors can be put

• For ClassWeaving we define
• A reuse extension for Ecore
• A reuse extension for UML

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 62

Reuseware Use Case: ClassWeaving for Ecore
reuseextension ClassWeavingEcore
implements ClassWeaving
epackages <http://www.eclipse.org/emf/2002/Ecore>
rootclass EPackage {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 EPackage.eClassifiers is hook {}
 }
 port Class {
 EClass.eOperations is hook {
 port expr = $name$
 }
 EClass.eStructuralFeatures is hook {
 port expr = $name$
 }
 EClass is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 EPackage.eClassifiers is prototype {}
 }
 port Advice {
 EClass.eOperations is prototype {
 port expr = $name$
 }
 EClass.eStructuralFeatures is prototype {
 port expr = $name$
 }
 EClass is slot {
 port expr = $name$
 }

The ClassWeaving composition system is
implemented for the Ecore language
(using the URI of the Ecore metamodel)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 63

Reuseware Use Case: ClassWeaving for Ecore
The ClassWeaving composition system is
implemented for the Ecore language
(using the URI of the Ecore metamodel)
A core can be extended with new classes
by extending the eClassifiers reference
of the EPackage metaclass

reuseextension ClassWeavingEcore
implements ClassWeaving
epackages <http://www.eclipse.org/emf/2002/Ecore>
rootclass EPackage {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 EPackage.eClassifiers is hook {}
 }
 port Class {
 EClass.eOperations is hook {
 port expr = $name$
 }
 EClass.eStructuralFeatures is hook {
 port expr = $name$
 }
 EClass is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 EPackage.eClassifiers is prototype {}
 }
 port Advice {
 EClass.eOperations is prototype {
 port expr = $name$
 }
 EClass.eStructuralFeatures is prototype {
 port expr = $name$
 }
 EClass is slot {
 port expr = $name$
 }

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 64

Reuseware Use Case: ClassWeaving for Ecore
The ClassWeaving composition system is
implemented for the Ecore language
(using the URI of the Ecore metamodel)
A core can be extended with new classes
by extending the eClassifiers reference
of the EPackage metaclass
Extending a class means extending the
eOperations and eStructuralFeatrues
references of an EClass; An EClass itself
will be referenced (anchor) as
replacement for advices; Each EClass and
its references are accessible through a
port identified by the class name

reuseextension ClassWeavingEcore
implements ClassWeaving
epackages <http://www.eclipse.org/emf/2002/Ecore>
rootclass EPackage {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 EPackage.eClassifiers is hook {}
 }
 port Class {
 EClass.eOperations is hook {
 port expr = $name$
 }
 EClass.eStructuralFeatures is hook {
 port expr = $name$
 }
 EClass is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 EPackage.eClassifiers is prototype {}
 }
 port Advice {
 EClass.eOperations is prototype {
 port expr = $name$
 }
 EClass.eStructuralFeatures is prototype {
 port expr = $name$
 }
 EClass is slot {
 port expr = $name$
 }

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 65

Reuseware Use Case: ClassWeaving for Ecore
The ClassWeaving composition system is
implemented for the Ecore language
(using the URI of the Ecore metamodel)
A core can be extended with new classes
by extending the eClassifiers reference
of the EPackage metaclass
Extending a class means extending the
eOperations and eStructuralFeatrues
references of an EClass; An EClass itself
will be referenced (anchor) as
replacement for advices; Each EClass and
its references are accessible through a
port identified by the class name

The eClassifiers reference of the
EPackage metaclass defines the content
of an aspect

reuseextension ClassWeavingEcore
implements ClassWeaving
epackages <http://www.eclipse.org/emf/2002/Ecore>
rootclass EPackage {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 EPackage.eClassifiers is hook {}
 }
 port Class {
 EClass.eOperations is hook {
 port expr = $name$
 }
 EClass.eStructuralFeatures is hook {
 port expr = $name$
 }
 EClass is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 EPackage.eClassifiers is prototype {}
 }
 port Advice {
 EClass.eOperations is prototype {
 port expr = $name$
 }
 EClass.eStructuralFeatures is prototype {
 port expr = $name$
 }
 EClass is slot {
 port expr = $name$
 }

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 66

Reuseware Use Case: ClassWeaving for Ecore
The ClassWeaving composition system is
implemented for the Ecore language
(using the URI of the Ecore metamodel)
A core can be extended with new classes
by extending the eClassifiers reference
of the EPackage metaclass
Extending a class means extending the
eOperations and eStructuralFeatrues
references of an EClass; An EClass itself
will be referenced (anchor) as
replacement for advices; Each EClass and
its references are accessible through a
port identified by the class name

The eClassifiers reference of the
EPackage metaclass defines the content
of an aspect
An advice is modelled as an instance of
EClass; The eOperations and
eStructuralFeatrues references are
exported; The EClass itself is to be
replaced (slot); Each advice EClass and its
references are accessible through a port
identified by the class name

reuseextension ClassWeavingEcore
implements ClassWeaving
epackages <http://www.eclipse.org/emf/2002/Ecore>
rootclass EPackage {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 EPackage.eClassifiers is hook {}
 }
 port Class {
 EClass.eOperations is hook {
 port expr = $name$
 }
 EClass.eStructuralFeatures is hook {
 port expr = $name$
 }
 EClass is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 EPackage.eClassifiers is prototype {}
 }
 port Advice {
 EClass.eOperations is prototype {
 port expr = $name$
 }
 EClass.eStructuralFeatures is prototype {
 port expr = $name$
 }
 EClass is slot {
 port expr = $name$
 }

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 67

Reuseware Use Case: ClassWeaving for UML
reuseextension ClassWeavingUML
implements ClassWeaving
for <http://www.eclipse.org/uml2/2.1.0/UML>
rootclass Model {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 Package.packagedElement is hook {}
 }
 port Class {
 Class.ownedOperation is hook {
 port expr = $name$
 }
 Class.ownedAttribute is hook {
 port expr = $name$
 }
 Class is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 Package.packagedElement is prototype {}
 }
 port Advice {
 Class.ownedOperation is prototype {
 port expr = $name$
 }
 Class.ownedAttribute is prototype {
 port expr = $name$
 }
 Class is slot {
 port expr = $name$
 }

The ClassWeaving composition system is
implemented for the UML language (using
the URI of the UML metamodel)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD

reuseextension ClassWeavingUML
implements ClassWeaving
for <http://www.eclipse.org/uml2/2.1.0/UML>
rootclass Model {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 Package.packagedElement is hook {}
 }
 port Class {
 Class.ownedOperation is hook {
 port expr = $name$
 }
 Class.ownedAttribute is hook {
 port expr = $name$
 }
 Class is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 Package.packagedElement is prototype {}
 }
 port Advice {
 Class.ownedOperation is prototype {
 port expr = $name$
 }
 Class.ownedAttribute is prototype {
 port expr = $name$
 }
 Class is slot {
 port expr = $name$
 }

 68

Reuseware Use Case: ClassWeaving for UML
The ClassWeaving composition system is
implemented for the UML language (using
the URI of the UML metamodel)

In UML, the packagedElement reference
contains Classes and Associations...

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD

reuseextension ClassWeavingUML
implements ClassWeaving
for <http://www.eclipse.org/uml2/2.1.0/UML>
rootclass Model {
 fragment role Core if $not name.startsWith('advice')$ {
 port Container {
 Package.packagedElement is hook {}
 }
 port Class {
 Class.ownedOperation is hook {
 port expr = $name$
 }
 Class.ownedAttribute is hook {
 port expr = $name$
 }
 Class is anchor {
 port expr = $name$
 }
 }
 }

 fragment role Aspect if $name.startsWith('advice')$ {
 port Content {
 Package.packagedElement is prototype {}
 }
 port Advice {
 Class.ownedOperation is prototype {
 port expr = $name$
 }
 Class.ownedAttribute is prototype {
 port expr = $name$
 }
 Class is slot {
 port expr = $name$
 }

 69

Reuseware Use Case: ClassWeaving for UML
The ClassWeaving composition system is
implemented for the UML language (using
the URI of the UML metamodel)

In UML, the packagedElement reference
contains Classes and Associations...

...the class contains only ownedAttributes
(and no references or associaitons)

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 70

Reuseware Use Case: Using Ecore ClassWeaving

• Activate in CoConut:
• ClassWeaving composition system
• ClassWeaving for Ecore reuse extendsion

• Activation through
• Eclipse plugin extension point
• Dynamically at runtime

• Enables use of
• Fragment repository
• Composition program editor
• Composition engine

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 71

Reuseware Use Case: Example Observer

•Weaving observer functionality into a model of a file
system

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 72

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 73

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 74

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 75

FSPackage

FSFileFileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 76

FSPackage
FSFile

FileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 77

FSPackage
FSFile

FileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 78

FSPackage
FSFile

FileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 79

FSPackage
FSFile

FileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 80

FSPackage
FSFile

FileSystem FSFolder

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 81

FSPackage
FSFile

FileSystem

root filesfolder

adviceObserverPackage

Observer

observers

Subject

subjects

Attach()

FSFile

FileSystem

FSFolder

Subject

Observer

Anchor
Prototype

Hook
Slot

Reuseware Use Case: Example - Observer

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 82

Applications Of Model Weaving Techniques

© 2008 INRIA & TUD 83

Conclusion

• Model weaving is a core technique within MDE
• Creation, representation, storage and use of the relationships

between elements of different models

• Model weaving has a lot of different application domains
• Traceability, tool interoperability, data integration

transformation production, matching, composition, metamodel
comparison, model alignment, etc

• The Eclipse-GMT AMW project:
 http://www.eclipse.org/gmt/amw/

• The Reuseware Composition Framework:
 reuseware.org

http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/gmt/amw/

