
EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 1

ecl ipse.org/objectteams

Redefining Modularity,
Re-use in Variants and all that

with Object Teams

Stephan Herrmann, GK Software AG

Eclipse Day Kraków
September 13, 2012

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 2

ecl ipse.org/objectteams

Java

OT/J

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 3

ecl ipse.org/objectteams

A Little History of Spaghetti

In the beginning the world consisted of statements:
read, store, arithmetics, jump

jumps where found to be dangerous because:

Tim 'Avatar' Bartel

This is not
modular

Through undisciplined jumps
each statement could

relate to any other statement

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 4

ecl ipse.org/objectteams

A Little History of Spaghetti

Solution
combine statements to sub-routines / procedures

But: what about data?
data sharing through global variables

each procedure may relate to any global variable

Tim 'Avatar' Bartel

This is not
modular

Data Spaghetti

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 5

ecl ipse.org/objectteams

A Little History of Spaghetti

Solution
combine procedures and variables to classes

But: what about size?
systems made from 1000s of classes

each class may relate to any other class

Tim 'Avatar' Bartel

This is not
modular

Class Spaghetti

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 6

ecl ipse.org/objectteams

Attempts for Addressing Scale

Creating modules
everything you write should be a module

Statement 1 LOC

Procedure
module of 20 statements 20 LOC

Class
module of 20 procedures (“methods”) 400 LOC

Package
module of 20 classes 8000 LOC

Bundle
module of 20 packages 160000 LOC

Beans, Components, Super Packages, Modules, Jars ...

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 7

ecl ipse.org/objectteams

Attempts for Addressing Scale

Creating modules
everything you write should be a module

Statement 1 LOC

Procedure
module of 20 statements 20 LOC

Class
module of 20 procedures (“methods”) 400 LOC

Package
module of 20 classes 8000 LOC

Bundle
module of 20 packages 160000 LOC

Beans, Components, Super Packages, Modules, Jars ...

1 new concept for each level of scale?
Not an economic solution!

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 8

ecl ipse.org/objectteams

System made from Classes

Address

City

Order

Vendor

Item

Person

Transaction

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 9

ecl ipse.org/objectteams

Ordering

System made from Nested Classes

Address

City

Order

Vendor

Item

Person

Transaction

Windowing

Form Window

Field Button

Listener

Widget Srollbar

Persisting

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 10

ecl ipse.org/objectteams

ApplicationA
Ordering

System made from Nested Classes

Cool!
but...

Windowing

Persisting

ApplicationB
Traveling Windowing

Persisting

ApplicationC

 classes with 100's of inner classes are not manageable

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 11

ecl ipse.org/objectteams

Classes & Packages

Package
hierarchical organization: folders & files

Class
define boundary: signature ↔ implementation

support nesting

Choose one ! ?

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 12

ecl ipse.org/objectteams

Classes & Packages

Package
hierarchical organization: folders & files

Class
define boundary: signature ↔ implementation

support nesting

Solution: team = class & package

=

logical view

physical view

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 13

ecl ipse.org/objectteams

Classes & Packages

Package
hierarchical organization: folders & files

Class
define boundary: signature ↔ implementation

support nesting

Solution: team = class & package #1

Teams
unify class and package

make nesting feasible

modules at any level of scale

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 14

ecl ipse.org/objectteams

Composition: Dream vs. Reality

System construction, ideally:
build lots of small building blocks

compose small blocks to larger blocks

top-level block is your system

Remaining challenges
complexity makes hierarchical breakdown extremely difficult

software re-use is more demanding than lego playing

Problem of re-use
handle near miss!

transform “near miss” into “perfect match”

Essence of re-use

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 15

ecl ipse.org/objectteams

Unanticipated Adaptation

Transform “near miss” into “perfect match”
need a tool for adapting an existing module

(anticipated adaptation: parameters)

unanticipated adaptation?

O-O tool for adaptation: inheritance
acquire all from parent

adapt those parts that don't fit

Inheritance is “broken” for inner classes in Java!
inherited methods can be overridden

inherited classes cannot be overridden!

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 16

ecl ipse.org/objectteams

Example: Board Games

Team inheritance, members are virtual classes
consistent refinement of all members

Player

BoardGame

Token

Move Rule

Player

Chess

Token

Move Rule mature,
established concept

mature,
established concept

impossible to mix
elements from
different games

impossible to mix
elements from
different games

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 17

ecl ipse.org/objectteams

Example: Board Games

Team inheritance, members are virtual classes
consistent refinement of all members

deep overriding

flexible & modular

Player

Chess

Token

Move Rule

Player

BlitzChess

Token

Move Rule
validate() selectively override

at any nesting level
selectively override
at any nesting level

single choice:

version of Rule
version of validate()

single choice:

version of Rule
version of validate()

new BlitzChess()

#2

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 18

ecl ipse.org/objectteams

Essence of Re-Use

Commonalities
interfaces, (abstract) super-classes

team classes

Variations
sub-classes

sub-teams

Assemble selected variations to a system
what's the top-level?

App app = new ApplicationA();
app.run();

decompose

compose

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 19

ecl ipse.org/objectteams

Dominance of the Instantiator

Capturing variations with inheritance
type of a variable describes a range of behaviors

instantiation selects one class / variant / behavior

each instance is locked to one behavior

Who has the power to create?
every occurrence of new decreases re-usability

“best practice” to avoid new in favor of factories (or DI)
for all classes / objects??

only those classes that are relevant for sub-classing

pre-planning vs. unanticipated adaptation

who instantiates the factory?

This power creates conflicts
there can only be one winner

re-use is limited to one step

new

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 20

ecl ipse.org/objectteams

Dominance of the Instantiator

Capturing variations with inheritance
type of a variable describes a range of behaviors

instantiation selects one class / variant / behavior

each instance is locked to one behavior

Who has the power to create?
every occurrence of new decreases re-usability

“best practice” to avoid new in favor of factories (or DI)
for all classes / objects??

only those classes that are relevant for sub-classing

pre-planning vs. unanticipated adaptation

who instantiates the factory?

This power creates conflicts
there can only be one winner

re-use is limited to one step

These conflicts are a result
from limitations of inheritance.
These conflicts are a result

from limitations of inheritance.

new

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 21

ecl ipse.org/objectteams

Inheritance is great, but ...
A text book example:

A man/woman is a person, OK

An employee is a person, OK?
Born as an employee?

Dying when loosing the job?

Several jobs, yet only one salary?

Whats wrong with inheritance?
Missing “become”, “quit” 

Can't duplicate fields 

Can we do better?
Yes:

Employee is a Role played by a Person

Person
name

WomanMan

Employee
salary

Limitations of Inheritance

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 22

ecl ipse.org/objectteams

playedBy relationship

Advantages:
Dynamism:
roles can come and go
(same base object)

Multiplicities:
one base can play several roles
(different/same role types)

joe: Person
name=”joe”

:Student
matr=0815

«playedBy»

:Employee
salary=100

«playedBy»

:Employee
salary=2000

«p
la

ye
dB

y»

Person
name

Employee
salary

«playedBy»

Role Base

Role playing

Roles in OOPLs have been
studied for approx. 20 years

Roles in OOPLs have been
studied for approx. 20 years

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 23

ecl ipse.org/objectteams

Capabilities of Roles

● playedBy
connect role to base

● callout
forward to base

● callin
intercept base method

Person

getName()
getPhone()

«playedBy»

Conceptually this is one object

Employee

getName()
getOfficePhone()

getOfficePhone <- getPhone callin

getName -> getName
callout

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 24

ecl ipse.org/objectteams

Composition Redefined

Class-based inheritance is rigid
re-use requires flexibility

flexibility is achieved by complex design patterns

those are work-arounds

Composing instances
one instance can accumulate multiple behaviors

Composing at runtime
an instance may change its behavior during its life time

Person
name

Employee
salary

«playedBy»

Role Base

#3

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 25

ecl ipse.org/objectteams

Roles vs. Modules

BasePkg

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()
method2()

 «playedBy»

C1
 «playedBy»

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

Role2 & C2 are “one object”

Avoid role spaghetti

Roles & base each live in their own context / module

Bases may be encapsulated inside a module
not all bases will be visible to our roles

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 26

ecl ipse.org/objectteams

Roles vs. Modules

BasePkg

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()
method2()

 «playedBy»

C1
 «playedBy»

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

Decapsulation:
defined exceptions to encapsulation

Legalizing decapsulation:
visible, controllable (approve/deny per case)
less total coupling

#4

Role2 & C2 are “one object”

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 27

ecl ipse.org/objectteams

Modules for Roles

 MyTeam
teamField: someType
teamMethod(T2): Type2

BasePkg

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()
method2()

 «playedBy»

C1
 «playedBy»

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

Roles are members of a team
Behavior implemented as interaction among roles

Team activation controls all contained roles
no callin trigger into an inactive team

on-demand role instances per team instance

Off On

#5

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 28

ecl ipse.org/objectteams

Summary

Your shopping cart contains five items:

Team classes / packages
unifying classes & packages makes nesting feasible

Team inheritance
consistent specialization, deep overriding (“virtual classes”)

Role playing
dynamically specialize / compose instances at runtime

Decapsulation
admit exceptions from boundary enforcement

Teams are modules for roles
consistent (de)activation – affecting callin and role instantiation

To check out these items please visit
 http://eclipse.org/objectteams

http://eclipse.org/objectteams

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 29

ecl ipse.org/objectteams

Install into a recent Eclipse package

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 30

ecl ipse.org/objectteams

Java

OT/J

JDTJDT OTDT «adapts»

 «playedBy»

«playedBy»

Object Teams Development ToolingObject Teams Development Tooling

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 31

ecl ipse.org/objectteams

Credits

Resources used in this presentation
http://upload.wikimedia.org/wikipedia/commons/9/93/Spaghetti.jpg by Tim 'Avatar' Bartel

http://upload.wikimedia.org/wikipedia/commons/9/93/Spaghetti.jpg

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 32

ecl ipse.org/objectteams

 Bonus Material

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 33

ecl ipse.org/objectteams

Adaptation using Object Teams

Eat the cake and have it, too
adaptation is a separate module (team and role classes)

tightly integrated with existing code

minimal coupling

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 34

ecl ipse.org/objectteams

Connector Pattern

Abstract team provides implementation
Implement Use Case only in terms of roles

Team and base package are independent
Only the Connector knows both

Connector adds bindings to base package
No implementation, just integration

Re-using the collaboration
Multiple Connectors for multiple base packages

FlightBookingFlightBooking

Passenger

Segment

Flight

 FlightBonus

 Bonus Bonus

 Subscriber

 BonusItem

 Subscriber

 BonusItem

«adapts»

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 35

ecl ipse.org/objectteams

Observer-Mediator-Actuator

C1 C2 C3 C4

 adaptation
base application

 Mediator Mediator

ObserverRole

MediatorRole1 MediatorRole2

mediatorStorageField : DataStructure

ActuatorRole

write read

write

additionalReference

read

intercept
(non-modifying)

decorate intercept
(modifying)

decorate

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 36

ecl ipse.org/objectteams

Nesting – Stacking – Layering

Nesting

Stacking

Layering

Team plays the role RoleTeam plays the role Role

Team plays the role BaseTeam plays the role Base

Role plays the role BaseRole plays the role Base

EclipseDay Kraków 2012 | © 2012 by Stephan Herrmann; made available under the EPL v1.0 # 37

ecl ipse.org/objectteams

Components: OT/Equinox

Bundle ABundle A

CA1 CA2

Bundle BBundle B

export

internal

CB1

CB2

CB4
CB3

«require»

Bundle CBundle C
CC1

Team1Team1
import base CB1;
import base CB3;

import base CB1;
import base CB3;

R2

...
Require-Bundle: B
...

MANIFEST.MF

R1
rm←bm

IB2

CA2

extension
point

«aspectBinding»

«playedBy»

«playedBy»

<extension
 point="org.objectteams.otequinox.aspectBindings">

 <aspectBinding>
<basePlugin id=”B”/>
<team class=”Team1”

activation=”ALL_THREADS”/>
 </aspectBinding>

plugin.xml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

