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› Introduction

› Advanced debugging features
– Non-stop multi-threaded debugging
– Pretty-printing of complex structures
– Multi-process debugging
– Reverse debugging
– Multi-core debugging

› GDB Tracepoints

Summary
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› Many companies deal with embedded systems

› Linux is widely used in the embedded space

› Applications are complex and have complex interactions

› Use of different targets
– Different OS: Linux, Real-time OS, proprietary OS
– Different architectures
– Different environments: design, test, integration, live site
– Different setups : Simulator, Real hardware, Lab, JTAG

Introduction
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› Need for a debugging tool to address those situations

› Same tool for design, test, integration, live sites
› Same tool for simulator, real-target
› Same tool for different archs, OS
› Same tool for different types of users

➢GDB provides the advanced debugging features
➢Eclipse Integration provides the ease-of-use and efficiency

Introduction
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Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization
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Non-Stop multi-threading

● Debugging a process by stopping its execution might cause 
 the program to change its behavior drastically

● Some threads should not be interrupted for proper program execution
● Heartbeat threads
● Monitoring threads
● Server threads

● Non-stop allows to stop and examine a subset of threads, while 
 other threads continue to run freely.
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Non-Stop multi-threading

● Allows to individually control treads
● Step, Resume, Suspend

Threads 3 and 4 
are stopped

Threads 1 and 2 
are still running
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Pretty-printing

● Content of complex abstract data structures should be 
 presented to the user while keeping the abstraction.

● Vectors
● List
● Maps
● User-defined structure

● GDB provides Python pretty-printing feature which is STL-ready
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Pretty-printing (Now)

No pretty-printing

Partial pretty-printing
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Pretty-printing (Next)

Full pretty-printing
with editable values

● Display content in user-friendly fashion
● Allows to modify content directly!
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Multi-process (Now)
● Currently available for targets that have a single memory space for all processes

Multiple processes in the same
launch.  They can be individually 

controlled and inspected

Dynamically connect/disconnect
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Multi-process (Next)
●  Current work to bring this to Linux using GDB 7.2 for next release

Multiple processes in the same
Launch in Non-Stop mode
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Reverse debugging

● Often, when debugging, you realize that you have gone too far 
 and some event of interest has already happened.
 

● Restarting execution to reach that same failure can be tedious 
 and time consuming
 

● Why not simply go backwards?

● Undo the changes in machine state that have taken place as the program
 was executing normally i.e., revert registers and memory to previous values

● GDB provides Process Record and Replay for Linux

● Allows to go backwards, modify memory/registers, then resume execution
 on a new path!
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Reverse debugging

Buttons to control
reverse execution Toggle reverse

and display
execution buttons
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Multi-core debugging

● As systems get more complex, so does the software running on them

● Debugging tools must provide more information to describe 
 these complex systems

● Multi-core systems are the default now

● Troubleshooting requires having knowledge of what is running where
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Multi-core debugging

● First step in upcoming broader multi-core debugging support
● Indicates core information to the user

Cores are shown
for both threads
and processes
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Others

● Any binary debugging (Now)
● Allows to debug any binary without having to build it in Eclipse
● Almost immediate debugging of GDB or GCC!

● Automatic remote launching (Next)
● Will automatically start gdbserver on your target 

● Global breakpoints (Next)
● Allows to stop processes that don't have the debugger attached to it
● Essential for short-lived processes
● Essential for startup-sequence debugging on a real target 
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Dynamic Tracing

› Using a debugger drastically changes execution

› In some cases, a debugger is too intrusive :
– Debugging a race condition

– Investigating user-interface issues

– Live sites

– Real-time systems

› Low-overhead tracing is the answer: LTTng, UST

› What if existing static traces don’t give info needed?

› What about systems that are not instrumented?

Eclipse's integration of GDB’s Dynamic Tracepoints
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› Creation of tracepoints is done as for breakpoints
› Enable/Disable

› Dynamic condition

› Specification of data to be gathered using symbolic 
expressions and memory addresses (actions)

› Pass count
› Trace-state variables can be used in conditions and 

actions
› Tracepoints are only in effect if tracing is enabled

Eclipse Tracepoints
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Eclipse Tracepoints Selection

› Tracepoints treated as breakpoints
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Eclipse Tracepoints Display
› Tracepoints
› Tracepoints with actions
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Eclipse Tracepoints Disassembly
› Disassembly view support for Tracepoints
› Tracepoint with condition
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Eclispe Tracepoints Properties
› Tracepoints properties

– Location
– Enablement
– Condition
– Pass count
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Eclipse Tracepoints Actions
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Eclipse Tracepoints Actions
› Tracepoints action types

– Collect
– Evaluate
– While-Stepping

› Collect
› Evaluate
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Eclipse Tracepoints Control
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Eclipse Tracepoints Control
› Trace Control View

– Refreshing info
– Trace Variables
– Start/Stop Tracing
– Navigate during Visualization
– Stop Visualization
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Eclipse Tracepoints Variables
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Eclipse Trace Data

› Resulting trace data 
– can be stored to file
– can be visualized in Eclipse immediately or in the future
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› Navigation through data records using GDB
› Each data record is a snapshot of debug information
› Records can be examined using standard debugger views

– As if debugger was attached at a specific point in time
– Only collected information can be shown
– Highlighting of the tracepoint of interest

› All collected data of a record can also be dumped as plain 
text

› Trace data can be saved to file
› Saved trace data can be examined offline

Eclipse Trace Data Visualization
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Eclispe Trace Data Visualization
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Eclipse Static Tracepoints

› Next phase of development

› Using GDB and UST

› Handled like Dynamic Tracepoint, except for creation
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Eclipse Static Tracepoints

› Creation of tracepoint done by designer before compilation

› As for Dynamic tracepoints:
– Enable/Disable tracepoints dynamically
– Dynamic condition
– Can additionally have dynamic tracing specified (actions)
– Pass count
– Trace-state variables
– ...
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› Support for Fast Tracepoints
– Explicit or implicit support?

› Support for Static Tracepoints

› Support for Observer mode

› Support for Global Actions (affecting all tracepoints)

Planned Tracepoint Features



© Ericsson  |  GCC Summit 2010

› Disabling tracepoints during Tracing

› Tracepoints Enhanced Visualization:
– Currently the user must have an idea of what has been collected
– Goal is to directly and only show what has been collected

› Fast Tracepoints on 3-byte instruction
– Currently fast tracepoints are 5-byte jumps insert in the code

– New 3-byte jump to a nearby location to the 5-byte jump

Planned Tracepoint Features
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Getting it to work for you in five easy steps

1.Downloading Eclipse Linux Package:
• http://eclipse.org/downloads
• Choose: “Eclipse IDE for C/C++ Linux Developers”

2.Extract it: tar xf <packageFile>

3.Run it: cd <packageDir> ; ./eclipse

4.Create a (dummy) C/C++ project: “Hello World” is fine

5.Start debugging... GDB... GCC... etc...

http://eclipse.org/downloads
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Questions? 
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