Real-time Debugging using
GDB Tracepoints and other
Eclipse features

GCC Summit 2010

2010-010-26

mailto:francois.chouinard@ericsson.commarc.khouzam@ericsson.com

Summary

> Introduction

> Advanced debugging features
- Non-stop multi-threaded debugging
- Pretty-printing of complex structures
— Multi-process debugging
- Reverse debugging
- Multi-core debugging

> GDB Tracepoints

© Ericsson | GCC Summit 2010

Introduction

> Many companies deal with embedded systems

> Linux Is widely used in the embedded space

> Applications are complex and have complex interactions

> Use of different targets
- Different OS: Linux, Real-time OS, proprietary OS
- Different architectures
- Different environments: design, test, integration, live site
- Different setups : Simulator, Real hardware, Lab, JTAG

© Ericsson | GCC Summit 2010

Introduction

> Need for a debugging tool to address those situations

> Same tool for design, test, integration, live sites
> Same tool for simulator, real-target

> Same tool for different archs, OS

> Same tool for different types of users

»GDB provides the advanced debugging features
»Eclipse Integration provides the ease-of-use and efficiency

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Non-Stop multi-threading

* Debugging a process by stopping its execution might cause
the program to change its behavior drastically

* Some threads should not be interrupted for proper program execution
* Heartbeat threads
* Monitoring threads
* Server threads

* Non-stop allows to stop and examine a subset of threads, while
other threads continue to run freely.

© Ericsson | GCC Summit 2010

Non-Stop multi-threading

* Allows to individually control treads
e Step, Resume, Suspend

File Edit Refactor MNavigate Search PBun

Project Window Help

e o | B KWK 0-Q | ®@® 9| 4| t

Ty a2,

¥ 12 NonStopMultiThreading

start_thread() at Oxb7fc150f

clone() at Oxb7elaale

sl gdb

= [c]| NonStopMultiThreading [C/C++ Application]

- o Thread [4] 6001 (Suspended : Breakpoint)

worker_thread() at /homeffrancois/Workspaces)/

P o Thread [3] 5999 (Suspended 7 Breakpoint)
 Thread 2] 5558 mmng;/_
Thread [1] 5995 (Running)

o/MonStopMultiThreading/src/NonStopMultiThrea

. |

(Iﬁl MonStopMultiThreading.cpp &2

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Pretty-printing

* Content of complex abstract data structures should be
presented to the user while keeping the abstraction.
* Vectors
* List
* Maps
* User-defined structure

* GDB provides Python pretty-printing feature which is STL-ready

© Ericsson | GCC Summit 2010

Pretty-printing (Now)

9= Variables 22 . % Breakpoints]ﬂ",d." Expressions} i Pegisters]l\ModulesW @ &a & % - -

Name | Type Value

= = coll
= (& std::_Vector base<std::vector< std:: Vector base<std::vector<int, std: {...}
= (= M _impl std::_Vector base=std::vector=int, std:; {...}
P (= std::allocator<std::vector: std::allocator<std::vector<int, std::alloi {...}
P » M start std::vector<int, std::allocator<int> > * 0x8055358
P =» _M_finish std::vector<int, std::allocator<int> > * 0x8055388
P » _M_end_of storage \ std::vector<int, std::allocator<int> > * 0x8055388
std::string {..}

b= str

Name : coll

Details:{<std:: Vector base<std:;vector<int, std::allocator<int> =, std::allocator<std::vect
Default:{...}
Decimal:{...}
Hex:{...}
Binary:{...}
Octal:{...}
[>)
o T s

Name : coll
Details:std::vector of length 4, capacity 4 = {std::vector of length 3, capacity 3 = {1, 2,

Default:{...}
Decimal:{...}
Hex:{...}
Binary:{...}
Octal:{...}

[2)

© Ericsson | GCC Summit 2010

H

Pretty-printing (Next)

* Display content in user-friendly fashion
* Allows to modify content directly!

fM= Variables &2 - % Breakpnints}ﬁif? Expressions] it F.egisters] =) Modules} en o o= EI\
Name Type Value
std::vector<=std::vector<int, std::allocal {...}
= (= [0] std::vector<int, std::allocator<int= > | {...}
9= [0] int 1
9= [1] int 2
9= [2] int 3
- (= [1] std::vector=int, std::allocator<int= = €{...}
int

Mame : coll
Details:std::vector of length 4, capacl
Default:{...}
Decimal:{...}
Hex:{...}
Binary:{...}
Octal:{...}

jector of length 3, capacity 3 = {1, 2,

[2)

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Multi-process (Now)

* Currently available for targets that have a single memory space for all processes

M Ao BNt s B @aTe0

w [E]TADE [C/C++ Attach to Application]
¥ 1 JUnitProcess_PT [165]

v @ Thread [5] 32960 (Suspended : Step)
= mainExpressionTestApp() at local’/home/imckhou TADEfexample/ JUnitProcess xpr inTestApp.cc:
= JunitProcess_PT_Impl:handleTimeout) at /local/home/imckhou/TSP/TADE/example/JUnitProcess_OW/src/JUnitProc
= 0xe344550

= §®LoadReader [156]
p® Thread [4] 32936 (Running)
= i JunitProcess2_PT [166]

+ o® Thread [2] 32961 (Suspended : Breakpoint)
= mainBreakpointTestApp() at local/home/imckhou/TSP/TADE/example/JUnitProcess2_OU/sro/BreakpointTestApp.cc:
= JUnitProcess2_PT_Impl:-handleTimeout(at flocal/home/imckhowTSP/TADE/example/JUnitProcess2_ OU/src/JUnitPr
= Oxe344550

s gdb

1 | | [»

© Ericsson | GCC Summit 2010

Multi-process (Next)

* Current work to bring this to Linux using GDB 7.2 for next release

1+ Debug 3 I T T B S = e ¥ =8

= [c] Local Attach 7.2 [C/C++ Attach to Application]
= o2 floopThird [10267]
- of® Thread [3] [core: O] (Suspended : Breakpoint)
= main() at loop.cc:6 0xB8048517
- &2 floopSecond [10266]

-* Thread [2] [core: 0] (Running : Container)
= of2 floopFirst [10265]
= o Thread [1] [core: 0] (Suspended : Breakpoint)
= main() at loop.cc:6 0x8048517
sl gdb

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Reverse debugging

* Often, when debugging, you realize that you have gone too far
and some event of interest has already happened.

* Restarting execution to reach that same failure can be tedious
and time consuming

* Why not simply go backwards?

* Undo the changes in machine state that have taken place as the program
was executing normally i.e., revert registers and memory to previous values

* GDB provides Process Record and Replay for Linux
* Allows to go backwards, modify memory/registers, then resume execution

on a new path!

© Ericsson | GCC Summit 2010

Reverse debugging

Debug - ReverseDebugging/src/ReverseDebugging.cpp - Eclipse SDK

File Edit Refactor Navigate Search Run Project Window Help
!L‘ﬁ" @ E_"} Jﬁ" OV Q" ‘E e &v ‘ ’ ‘le l{}:‘v i ~ - Eﬁ

| %5 Debug % M oD 4 o> B EROD

v [£]ReverseDebugging [C/C++ Application

v #ReverseDebugging
< 4 Thread [1] (Suspended : Breakpojnt)
— main() at /local/home/imckhou/wvorkspace-ExlipseCon/Reve:seDebugging/src/ReverseDebugging.cpp:60

v gdb
» ReverseDebugging

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Multi-core debugging

* As systems get more complex, so does the software running on them

* Debugging tools must provide more information to describe
these complex systems

* Multi-core systems are the default now

* Troubleshooting requires having knowledge of what is running where

© Ericsson | GCC Summit 2010

Multi-core debugging

* First step in upcoming broader multi-core debugging support
* Indicates core information to the user

¥ Debug 2 it e L] LR i €2

= [&|multithread DSF 7.1 [C/C++ Application]

= 1#/ocaliimckhoufruntime-TestDSF/NonStop/Debug/NonStop [3031
b o Thread [3] 30326 [core: 2] (Buspended : Container)
A7 [core: 0] (3

= #Thread [2] 303
=thread exec1() avnucallmckhoufruntime-TestDSF/NonStop/src/MNonStop.cpp:12 0x8048730
= start_thread() at 0xb7fag2ab

= clone() at 0xb7e21lhae
b o Thread [1] 303 @ spended : Container)
s/ gdb

.E MonStop

spended : Breakpoint)

© Ericsson | GCC Summit 2010

Others

* Any binary debugging (Now)
* Allows to debug any binary without having to build it in Eclipse
* Almost immediate debugging of GDB or GCC!

* Automatic remote launching (Next)
* Will automatically start gdbserver on your target

* Global breakpoints (Next)
* Allows to stop processes that don't have the debugger attached to it
* Essential for short-lived processes
* Essential for startup-sequence debugging on a real target

© Ericsson | GCC Summit 2010

Features

Now
> Non-Stop multi-threading
> Partial Pretty-printing
> Single space multi-process
> Reverse
> Any binary debugging
> Tracepoints

© Ericsson | GCC Summit 2010

Next
> Full Pretty-printing
> Full Multi-process
> Multi-core debugging
> Global breakpoints

> Tracepoints improvements
- Fast tracepoints
- Static tracepoints
- Observer-mode
- Intelligent trace visualization

Dynamic Tracing

> Using a debugger drastically changes execution

> In some cases, a debugger is too intrusive :
- Debugging a race condition
- Investigating user-interface issues
- Live sites
- Real-time systems

> Low-overhead tracing is the answer: LTTng, UST

> What If existing static traces don’t give info needed?
> What about systems that are not instrumented?

» Eclipse's integration of GDB’s Dynamic Tracepoints

© Ericsson | GCC Summit 2010

Eclipse Tracepoints

> Creation of tracepoints is done as for breakpoints
> Enable/Disable
> Dynamic condition

> Specification of data to be gathered using symbolic
expressions and memory addresses (actions)

> Pass count

> Trace-state variables can be used in conditions and
actions

> Tracepoints are only in effect if tracing is enabled

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Selection

> Tracepoints treated as breakpoints

[=i
13 storeX(x); =
14 storeY(y);

15 return first() - second(};
16 }
17 L | . - Margin context-menu
18 int multiply(int x, int y) {
Toggle Breakpoint
Disable Breakpoint
Breakpoint Properties...
Breakpo g CiC+ ints
Go to Annotation Ctri+1 {M‘D
Add Bookmark...
Add Task... counter =1; counter--) {
= . . counter);
~ Show Quick Diff sShift+Ctri+0Q
Show Annotation
+ Show Line Numbers
Folding »
Preferences...

SUPTIVALE: <

e | armm el mdhmma i S mide aah T
4| | >|

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Display

> Tracepoints
> Tracepoints with actions

| Tracing.cpp 2 = O % Breakpoints i #® %@ ‘Q‘ = be‘ v =0
13 storeX(x); - 4] 0 /home/imckhoujruntime fTracing/sre/Tracing.cpp [line: 27]
= stnre‘r[ﬂ : ki . « [home/imckhou/runtime Mracing/src/Tracing.cpp [line: 64]
15 return first() - second(); —
16 1 ome,‘lmckhou,fmntimef’l'mcingjsrcﬂracing.cpp [line: 7]
17
8 int multiply(int x, int y) { [# /home/lmckhou/runtime fMracing/src/Tracing.cpp [line: 19]
@3 storeX(x); £, /home/Imckhou/runtime fMracing/src/Tracing.cpp [line: 29]
f storeY(y); . g s -
51 retivh Tirst() ¥ secand(i: gmome,’lmckhnujmntlmeﬂraungfsrq’rramng.cpp[Ilne. 30]
22 /home/Imckhou/runtime fracing/src/Mracing.cpp [line: 32]
;3 } e gt g.cpp o
24 int factorial(int y) {
25 storeY(y);
26 =
27 int total = 1;
28 for (int counter = first(); counter >1; counter--) {
219 total = multiply(total, counter);
10 totals+;
1 }
Bh2
33 return total;
34 }
35

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Disassembly

> Disassembly view support for Tracepoints
> Tracepoint with condition

o

=2 Disassembly E:E\\H

Enter location here

-

5

@~ -0

08048671 : mov BOx8(%ebp),%eax
686048674 : mov S%eax, (%esp)
8048677 :
a7 int total = 1;
¥ BBE4867cC: movl $60x1,-0xc(%ebp)

08048683 ; mov O@x8(%ebp),%eax

PBR48686 mov %eax, (kesp)

B8048689:

£804868e: mov S%eax, -0x16(%ebp)
848691 :

call 0x80486d6 < ZNlBoperationséstoreYEi=
28 for (int counter = first(); counter =1; co
call 0xBo486e4 < ZNlBoperations5TirstEv>

jmp 8x80486b7 < ZNl@operations9factorialEi+83>
ﬁ:z total = multiply(total, counter);

4]

8048693 : mov -0x18(%ebp) ,%eax
08048696 : mov %eax,0x8(%esp)
p804869a; mov -@xc(%ebp),%eax
B804869d : mov %eax,0x4(%esp)
080486a1: mov Ox8(%ebp),%eax
080486a4: mov %eax, (%esp)
080486a7: call 0x8048618 < ZNlBoperations8multiplyEii>
AS0486ac: mov %eax, -0xc(%ebp)
'%-: total++;
dap486at : addl $8x1,-0xc(%ebp)
28 for (int counter = first(): counter =1; co
B80486b3 : subl %$0x1,-8x16(%ebp) E
[« | *

© Ericsson | GCC Summit 2010

Eclispe Tracepoints Properties

> Tracepoints properties

- Location
- Enablement
- Condition
- Pass count
|t§,fpe filter text 2 | Common Gav v w

Actions Class: C/C++ line tracepoint

File: fhome/imckhoufruntimefMracing/src/Tracing.cpp

Line number: |30
Enabled
Condition: total < 25|

Pass count: 10

@ Cancel oK

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Actions

=

Properties for

It}rpe filter text Actions R T
IS | .o o this tracepoint
Common
Name Type Summary
collect total Collect Action collect total
Remtwel Upl annl
Available actions:
Name Type Summary
collect total Collect Action collect total
collect counter | Collect Action collect counter,$reg
Untitled Evaluate Evaluate Action eval Scount=%count+1
Attach | New... | Edit... |
Restore Defaults | Apply
@ Cancel | oK |

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Actions

> Tracepoints action types
- Collect
- Evaluate
- While-Stepping
Collect
Evaluate

[New Tracepoint Action X

Action name: |My New Collect Action

Action type: | Collect Action
Evaluate Action
While-Stepping Action

Data to colleq

Cancel oK

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Control

§
B2 e B i ToO

~ [&] Remote Tracing [C/C++ Application]
Stack frames

= 5 Tracing
= Thread [1] (Suspended : Breakpoint)

— m_ﬂ i nl } at mnrn E'ﬂ mck hritnmtirma_CelincaTanMacinalcre Mrocinn

context-menu

= Copy Stack Ctrl+C
»3 gdb Find... Ctri+F
e Tracing s
=z, Drop To Frame
2. Step Into F5
A PI
= Step Over F6 —I
[£ Tracing.cpp 2 ™~ .i% Step Retumn F7
58 return mStorage|| 5 Start Tracing
51 } @ Stop Tracing
52
53 int mStorage[2]; Instruction Stepping Mode
54 %; Use Step Filters
55
6int main() { # Connect...
operations op; %+ Resume Without Signal
printf("12 + 3 = %d\ k= Resume Es
printf("7 - 4 = %d\n -
printf("9 = 2 = %d\n| == 2Uspend
Terminate Ctrl+F2
printf("5! = %d\n", | % Terminate and Relaunch
« Restart
FOERER 0; &% Disconnect

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Control

> Trace Control View
- Refreshing info
- Trace Variables
- Start/Stop Tracing
- Navigate during Visualization
- Stop Visualization

22 Trace Control Eia;\\\

& o |ed |{!=T~£}'1}?}v'='lf|

Last updated at: 14:24:36 /
Refresh

Tracing with live execution

Mot currently looking at any trace frame

Tracing is currently not active
Buffer contains 18 trace frames
Currently using 2732 bytes out of 5242880
Tracing stopped because of user request

Start/Stop

op/Navijate Tracing

isualizing

Trace Variables

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Variables

2 Trace Control E:E-M'w& = El]

Tracing with live executio

} Initial Value Current Value
Looking at trace frame 3,

| Strace_timestamp
Tracing is currently not ag
Buffer contains 18 trace f
Currently using 2732 bytg
Tracing stopped because

$tracePointCounter | 0

Trace variables can be used in
tracepoint conditions or actions

Refresh |

Name:

1 value: |0

Create |

Close

© Ericsson | GCC Summit 2010

Eclipse Trace Data

> Resulting trace data
— can be stored to file
- can be visualized in Eclipse immediately or in the future

'-'r—-:.-,ur B 21 g ﬁ i Il i = = E-\
Last updated at: 14:26:03 = Save Trace Data

Tracing with live execution
Looking at trace frame 3, tracepoint 4

Tracing is currently not active

Buffer contains 18 trace frames

Currently using 2732 bytes out of 5242880
Tracing stopped because of user request

© Ericsson | GCC Summit 2010

Eclipse Trace Data Visualization

> Navigation through data records using GDB
> Each data record is a snapshot of debug information

> Records can be examined using standard debugger views
- As if debugger was attached at a specific point in time
- Only collected information can be shown
- Highlighting of the tracepoint of interest

> All collected data of a record can also be dumped as plain
text

> Trace data can be saved to file
> Saved trace data can be examined offline

© Ericsson | GCC Summit 2010

Eclispe Trace Data Visualization

/f?» Debug E@_

o e om oE M

L S

#® B § &

)= Variables &2 . i Registers] =i Modules

Name

.Type Ivalue

= [c] Remote Tracing [C/C++ Application]
= 1 Tracing

= o Thread [1] (Suspended : Tracepoint 4, Record 5)

= operations:factorial() at /nome/imckhou/nintime-

s gdb
w1 Tracing

Tracepoint for this
trace is selected

b = this

[E;llected values BhD;;]
””"

110

| operations * const

)= counter int

)= total int

)

. ® % & o k[ﬂar[wv‘:ﬁ
[+ & momeﬂmckhoufmntlme EclipseCon/Tracing/src/Tracing.cpp [line: 27]
[] & fhome/imckhou/runtime-EclipseConfTracing/src/Tracing.cpp [line: 64]
£ /home/imckhou/runtime-EclipseCon/Tracing/src/Tracing.cpp [line: 7]

& /home/imckhou/runtime-EclipseCon/Tracing/src/Tracing.cpp [line: 19]

[& /homefimckhou/runtime-EclipseCon/Tracing/src/Tracing.cpp [line: 29]
¥ jhome/imckhou/runtime-EclipseCon/Tracing/src/Tracing.cpp [line: 30] [conditi

i

= 8 ||2s Trace Control 52 {}W@@@%G@vmﬁ

A

Kl | |
[¢ Tracing.cpp 2

20 storeYiy);

21 return first() * second();

}

int factorial(int y) {
storeY(y);

int total = 1;
for (int counter = first(); counter =1;
total = multiply(total, counter);

total++; \

}

Fa tutal:Lcollected is shown

Line where trace was

<] || Last updated at: 15:05:51

stop visualizaticnl

Looking at trace frame 5, tracepoint 4 I

Tracing is currently not active

Buffer contains 20 trace frames

Currently using 2744 bytes out of 5242880
Tracing stopped because of user request

| change tracel
[

co

© Ericsson | GCC Summit 2010

Eclipse Static Tracepoints

> Next phase of development

> Using GDB and UST

> Handled like Dynamic Tracepoint, except for creation

© Ericsson | GCC Summit 2010

Eclipse Static Tracepoints

> Creation of tracepoint done by designer before compilation

> As for Dynamic tracepoints:
- Enable/Disable tracepoints dynamically
- Dynamic condition
- Can additionally have dynamic tracing specified (actions)
- Pass count
- Trace-state variables

© Ericsson | GCC Summit 2010

Planned Tracepoint Features

> Support for Fast Tracepoints
- Explicit or implicit support?

> Support for Static Tracepoints

> Support for Observer mode

> Support for Global Actions (affecting all tracepoints)

© Ericsson | GCC Summit 2010

Planned Tracepoint Features

> Disabling tracepoints during Tracing

> Tracepoints Enhanced Visualization:
- Currently the user must have an idea of what has been collected
- Goal is to directly and only show what has been collected

> Fast Tracepoints on 3-byte instruction
- Currently fast tracepoints are 5-byte jumps insert in the code
- New 3-byte jump to a nearby location to the 5-byte jump

© Ericsson | GCC Summit 2010

Getting it to work for you In five easy steps

1.Downloading Eclipse Linux Package:

- http://eclipse.org/downloads
- Choose: “Eclipse IDE for C/C++ Linux Developers”

2.Extract It: tar xf <packageFile>

3.Run it: cd <packageDir> ; ./eclipse

4.Create a (dummy) C/C++ project: “Hello World” is fine
5.Start debugging... GDB... GCC... eftc...

© Ericsson | GCC Summit 2010

http://eclipse.org/downloads

Questions?

© Ericsson | GCC Summit 2010

ERICSSON

© Ericsson | GCC Summit 2010

	Eclipse Tracing Tracing Mini-Summit LinuxCon 2010 2010-08-09
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Summary
	Dynamic Tracing
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Questions?
	Slide 43
	Slide 44

