
Real-time Debugging using
GDB Tracepoints and other
Eclipse features

GCC Summit 2010

2010-010-26

marc.khouzam@ericsson.com

mailto:francois.chouinard@ericsson.commarc.khouzam@ericsson.com

© Ericsson | GCC Summit 2010

› Introduction

› Advanced debugging features
– Non-stop multi-threaded debugging
– Pretty-printing of complex structures
– Multi-process debugging
– Reverse debugging
– Multi-core debugging

› GDB Tracepoints

Summary

© Ericsson | GCC Summit 2010

› Many companies deal with embedded systems

› Linux is widely used in the embedded space

› Applications are complex and have complex interactions

› Use of different targets
– Different OS: Linux, Real-time OS, proprietary OS
– Different architectures
– Different environments: design, test, integration, live site
– Different setups : Simulator, Real hardware, Lab, JTAG

Introduction

© Ericsson | GCC Summit 2010

› Need for a debugging tool to address those situations

› Same tool for design, test, integration, live sites
› Same tool for simulator, real-target
› Same tool for different archs, OS
› Same tool for different types of users

➢GDB provides the advanced debugging features
➢Eclipse Integration provides the ease-of-use and efficiency

Introduction

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Non-Stop multi-threading

● Debugging a process by stopping its execution might cause
 the program to change its behavior drastically

● Some threads should not be interrupted for proper program execution
● Heartbeat threads
● Monitoring threads
● Server threads

● Non-stop allows to stop and examine a subset of threads, while
 other threads continue to run freely.

© Ericsson | GCC Summit 2010

Non-Stop multi-threading

● Allows to individually control treads
● Step, Resume, Suspend

Threads 3 and 4
are stopped

Threads 1 and 2
are still running

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Pretty-printing

● Content of complex abstract data structures should be
 presented to the user while keeping the abstraction.

● Vectors
● List
● Maps
● User-defined structure

● GDB provides Python pretty-printing feature which is STL-ready

© Ericsson | GCC Summit 2010

Pretty-printing (Now)

No pretty-printing

Partial pretty-printing

© Ericsson | GCC Summit 2010

Pretty-printing (Next)

Full pretty-printing
with editable values

● Display content in user-friendly fashion
● Allows to modify content directly!

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Multi-process (Now)
● Currently available for targets that have a single memory space for all processes

Multiple processes in the same
launch. They can be individually

controlled and inspected

Dynamically connect/disconnect

© Ericsson | GCC Summit 2010

Multi-process (Next)
● Current work to bring this to Linux using GDB 7.2 for next release

Multiple processes in the same
Launch in Non-Stop mode

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Reverse debugging

● Often, when debugging, you realize that you have gone too far
 and some event of interest has already happened.

● Restarting execution to reach that same failure can be tedious
 and time consuming

● Why not simply go backwards?

● Undo the changes in machine state that have taken place as the program
 was executing normally i.e., revert registers and memory to previous values

● GDB provides Process Record and Replay for Linux

● Allows to go backwards, modify memory/registers, then resume execution
 on a new path!

© Ericsson | GCC Summit 2010

Reverse debugging

Buttons to control
reverse execution Toggle reverse

and display
execution buttons

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process
› Multi-core debugging
› Global breakpoints
› Tracepoints improvements

– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Multi-core debugging

● As systems get more complex, so does the software running on them

● Debugging tools must provide more information to describe
 these complex systems

● Multi-core systems are the default now

● Troubleshooting requires having knowledge of what is running where

© Ericsson | GCC Summit 2010

Multi-core debugging

● First step in upcoming broader multi-core debugging support
● Indicates core information to the user

Cores are shown
for both threads
and processes

© Ericsson | GCC Summit 2010

Others

● Any binary debugging (Now)
● Allows to debug any binary without having to build it in Eclipse
● Almost immediate debugging of GDB or GCC!

● Automatic remote launching (Next)
● Will automatically start gdbserver on your target

● Global breakpoints (Next)
● Allows to stop processes that don't have the debugger attached to it
● Essential for short-lived processes
● Essential for startup-sequence debugging on a real target

© Ericsson | GCC Summit 2010

Now

› Non-Stop multi-threading

› Partial Pretty-printing

› Single space multi-process
› Reverse
› Any binary debugging
› Tracepoints

Features
Next

› Full Pretty-printing

› Full Multi-process

› Multi-core debugging

› Global breakpoints

› Tracepoints improvements
– Fast tracepoints

– Static tracepoints

– Observer-mode

– Intelligent trace visualization

© Ericsson | GCC Summit 2010

Dynamic Tracing

› Using a debugger drastically changes execution

› In some cases, a debugger is too intrusive :
– Debugging a race condition

– Investigating user-interface issues

– Live sites

– Real-time systems

› Low-overhead tracing is the answer: LTTng, UST

› What if existing static traces don’t give info needed?

› What about systems that are not instrumented?

Eclipse's integration of GDB’s Dynamic Tracepoints

© Ericsson | GCC Summit 2010

› Creation of tracepoints is done as for breakpoints
› Enable/Disable

› Dynamic condition

› Specification of data to be gathered using symbolic
expressions and memory addresses (actions)

› Pass count
› Trace-state variables can be used in conditions and

actions
› Tracepoints are only in effect if tracing is enabled

Eclipse Tracepoints

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Selection

› Tracepoints treated as breakpoints

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Display
› Tracepoints
› Tracepoints with actions

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Disassembly
› Disassembly view support for Tracepoints
› Tracepoint with condition

© Ericsson | GCC Summit 2010

Eclispe Tracepoints Properties
› Tracepoints properties

– Location
– Enablement
– Condition
– Pass count

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Actions

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Actions
› Tracepoints action types

– Collect
– Evaluate
– While-Stepping

› Collect
› Evaluate

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Control

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Control
› Trace Control View

– Refreshing info
– Trace Variables
– Start/Stop Tracing
– Navigate during Visualization
– Stop Visualization

© Ericsson | GCC Summit 2010

Eclipse Tracepoints Variables

© Ericsson | GCC Summit 2010

Eclipse Trace Data

› Resulting trace data
– can be stored to file
– can be visualized in Eclipse immediately or in the future

© Ericsson | GCC Summit 2010

› Navigation through data records using GDB
› Each data record is a snapshot of debug information
› Records can be examined using standard debugger views

– As if debugger was attached at a specific point in time
– Only collected information can be shown
– Highlighting of the tracepoint of interest

› All collected data of a record can also be dumped as plain
text

› Trace data can be saved to file
› Saved trace data can be examined offline

Eclipse Trace Data Visualization

© Ericsson | GCC Summit 2010

Eclispe Trace Data Visualization

© Ericsson | GCC Summit 2010

Eclipse Static Tracepoints

› Next phase of development

› Using GDB and UST

› Handled like Dynamic Tracepoint, except for creation

© Ericsson | GCC Summit 2010

Eclipse Static Tracepoints

› Creation of tracepoint done by designer before compilation

› As for Dynamic tracepoints:
– Enable/Disable tracepoints dynamically
– Dynamic condition
– Can additionally have dynamic tracing specified (actions)
– Pass count
– Trace-state variables
– ...

© Ericsson | GCC Summit 2010

› Support for Fast Tracepoints
– Explicit or implicit support?

› Support for Static Tracepoints

› Support for Observer mode

› Support for Global Actions (affecting all tracepoints)

Planned Tracepoint Features

© Ericsson | GCC Summit 2010

› Disabling tracepoints during Tracing

› Tracepoints Enhanced Visualization:
– Currently the user must have an idea of what has been collected
– Goal is to directly and only show what has been collected

› Fast Tracepoints on 3-byte instruction
– Currently fast tracepoints are 5-byte jumps insert in the code

– New 3-byte jump to a nearby location to the 5-byte jump

Planned Tracepoint Features

© Ericsson | GCC Summit 2010

Getting it to work for you in five easy steps

1.Downloading Eclipse Linux Package:
• http://eclipse.org/downloads
• Choose: “Eclipse IDE for C/C++ Linux Developers”

2.Extract it: tar xf <packageFile>

3.Run it: cd <packageDir> ; ./eclipse

4.Create a (dummy) C/C++ project: “Hello World” is fine

5.Start debugging... GDB... GCC... etc...

http://eclipse.org/downloads

© Ericsson | GCC Summit 2010

Questions?

© Ericsson | GCC Summit 2010

	Eclipse Tracing Tracing Mini-Summit LinuxCon 2010 2010-08-09
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Summary
	Dynamic Tracing
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Questions?
	Slide 43
	Slide 44

