
Slide subtitle

ADVANCED trouble-shooting

of real-time systems

Bernd Hufmann, Ericsson

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 2

AGENDA

2

4 References

3 Timing Analysis

1 Introduction

Trace Compass Overview

Q&A5 Q&A

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 3

› Troubleshooting tool

› Framework to build trace visualization and analysis tools

› Scalable: handle traces exceeding memory

› Extensible for any trace or log format: Binary, text, XML etc.

› Reusable views and widgets

› Available as standalone product or set of plug-ins

Trace Compass Overview

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 4

Trace Compass Overview

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 5

Data Flow

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 6

Data Flow

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 7

› Events Table

COMMON Features

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 8

› Searching

› Filtering

› Highlighting

COMMON Features

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 9

› Trace annotation (bookmarks) and markers

COMMON Features

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 10

StateFUL Analyses

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 11

› Pattern analysis

– Find a sequence of data within

a trace

› Customize Trace Compass

without adding code

–Generate state systems

– Do timing analysis

– Define specialized views

XML Analysis & views

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 12

› Extensible view to display of call stacks over time

› LTTng-UST and finstrument-functions of GCC

Call stack View

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 13

› Trace Compass can open multiple traces together to view it as one

– This is called an Experiment

› Useful for

– Traces coming from multiple nodes

– Traces from applications written in different languages

– Different layers (network, etc.)

› Traces can be synchronized by time

–Manually

– Automatic algorithm (extensible)

Trace Correlation

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 14

› Linux Tracing Toolkit - LTTng (UST, Kernel)

› Text & XML Logs (custom parsers)

› Common Trace Format – CTF

– application, kernel, HW, bare metal, etc.

› Packet Capture

› Best Trace Format - BTF

› GDB Trace Points

Built-in Trace Types

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 15

› Real-time systems

› We have two metrics to analyse

› what is the data and when did it come

› Timing is as important as data

› Measure time between a start and end state

– Simple: Start and end event

–Often: State Machine to determine start and end

› Represent execution times, latencies, latency chains etc.

TIMING ANALYSIS

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 16

› Locate timing problems

› Missed deadlines

› Potential missed deadline (find problem before it occurs)

› Analyze timing problems

› Find root cause and solution

› Solve difficult to debug sporadic problems

TIMING ANALYSIS

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 17

› Soft IRQ Latency

EXAMPLE

softIrq_raise

Softirq_handler_ent

ry

Latency 1

softirq_handler_exit

Latency 2

Total

Latency

softirq_raise

softirq_handler_entry

Latency 1

Latency 2

Total

Latency

Parameter: CPU ID, IRQ #

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 18

› Time between start and end

› Time for each transition

› Percentage sub-duration vs total

Generalization

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 19

› Define a state machine for timing analysis

– Implementation in Java as Trace Compass extension

– Data-driven pattern matching (in XML)

› Defining timing analyses on-the-fly

› Store in a built-in segment store

› Visualize data in various supplied views

Your Timing Analysis

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 20

Visualization

› Table

–Get raw data

– Explore data

– Sorting, highlighting, filtering

› Scatter Chart

– Latency vs Time

– Have a big picture of the

current range

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 21

Visualization

› Statistics

–Min, max, average etc.

– Find worst offenders

– Find worst possible offender

combination

› Distribution Chart

– Find outliers and modes easily

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 22

› Locate timing problems

› Missed deadlines

› Potential missed deadline (find problem before it occurs)

› Analyze timing problems

› Find root cause and solution

› Solve difficult to debug sporadic problems

TIMING ANALYSIS

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 23

› System overload

› System misconfiguration (e.g. wrong priorities of tasks)

› Priority inversion

– Lower priority task is blocking higher priority task (indirectly)

› Blocked threads, starvation, deadlock

› Slow code

Example Root Causes

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 24

Resources View

› Displays resources states (color-coded) over time

– CPUs, IRQs, SoftIRQs

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 25

Critical Path

› Displays of system wait chains for given process

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 26

PRIORITY VIEW

› Group processes per CPU and priority

› Quickly find priority inversion or misconfigured task priorities

› Note: View not mainlined yet – Prototype!

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 27

› Find contention at the Kernel

level using LTTng

› Realized as XML pattern

analysis

› Count of simultaneous waits

› Show all in timing analysis views

› Uaddr vs Thread Gantt chart

FUTEX analysis

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 28

OS Tracing Overview

› Overloaded resources

› CPU, Memory and IO Usage

› Counter-intuitive example, CPU

usage too low:

– Kernel memory usage is rising

› Find the offending process

– IO usage is high

› Maybe it’s swaps

– Too many seeks?

› Low IO, low CPU, low memory

usage and low bandwidth

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 29

FLAME GRAPH View

› Aggregation of function durations per call stack

› Highlights most time consuming execution path

› Find functions for performance optimization

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 30

Future Development

› User-configurable periodic markers

› Custom charts

› Enhanced call graph analysis and views

› Call stack views using data-driven analysis

› Pin & clone of views

› Time based import of traces/experiments

› Scalable segment store

› Enhanced searching, filtering and highlighting in Gantt charts

› Data-driven analysis and view enhancements

› Cropping of traces

› Priority view

› …

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 31

› Project pages

– http://tracecompass.org

– http://projects.eclipse.org/projects/tools.tracecompass

› Documentation

– Trace Compass User Guide

– Trace Compass Developer Guide

REFERENCES

http://tracecompass.org/
http://projects.eclipse.org/projects/tools.tracecompass
http://archive.eclipse.org/tracecompass/doc/org.eclipse.tracecompass.doc.user/User-Guide.html
http://archive.eclipse.org/tracecompass/doc/org.eclipse.tracecompass.doc.dev/Developer-Guide.html

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 32

› Linux Tracing Toolkit (LTTng)

– http://lttng.org/

› Diagnostic and Monitoring Working Group

– http://diamon.org/

› Common Trace Format (CTF)

– http://diamon.org/ctf/

› Trace Research Project

– http://hsdm.dorsal.polymtl.ca/

REFERENCES

http://lttng.org/
http://diamon.org/
http://diamon.org/ctf/
http://hsdm.dorsal.polymtl.ca/

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 33

› Bernd.Hufmann@ericsson.com

› Mailing list

– tracecompass-dev@eclipse.org

› IRC

– oftc.net #tracecompass

› Mattermost

– https://mattermost-test.eclipse.org/eclipse/channels/trace-compass

CONTACTS

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 34

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 37

› Custom Text and XML Parsers

– Line based parser with regex

– XML based extracting data from

XML elements and their attributes

Custom Parsers

ADVANCED trouble-shooting of critical real-time systems | © Ericsson AB 2017 | 2017-02-21 | Page 39

› High Resolution Timer – cyclictest application of rt-tests

› Latency between timer expiry till task starts

› Latency = Δ1+ Δ2 + Δ3 + Δ4

EXAMPLE

Event: 1 2 3 4 5 1

Δ1 Δ2 Δ3 Δ4 task
…

› Event 1: Timer expires

› Event 2: Interrupt begins executing

› Event 3: Interrupt handler marks the task to react

› Event 4: Linux scheduler switches to the task

› Event 5: Application task begins executing

