Monitoring a spacecraft from your smartphone using MQTT with Joram

joram.ow2.org mqtt.jorammq.com www.scalagent.com

David Féliot

Use case #1: on-call operators

- On-call operators (working outside the control centre)
 Receive alert reports describing anomalies
 First level analysis by checking the real-time telemetry
- Save time and effort

anywhere (connected)

Use case #2: distributed scientists

- Science team members remotely working
 - Their office is outside the mission centre that controls the scientific instruments
 - ⇒ Need to monitor the instruments health
 - ⇒ Situation happens in internationally cooperative space missions

Existing solution

- Client/server architecture
 - ⇒ Using HTTP to send requests to a data server
 - ⇒ Alerts and telemetry are received by polling the server
- Security can be easily handled
 - ⇒ One-way data flow (low interaction level)
 - ✤ From a secured zone (control centre) to a less secured zone (client)
 - ✤ No data sent by the clients to the control centre (e.g. commands)

MQTT (Message Queuing Telemetry Transport)

- Lightweight message queuing protocol
 - ⇒ Devices with limited resources
 - ⇒ Constrained networks (bandwidth, connectivity)
- Provides a Publish/Subscribe interaction pattern
 - ⇒ Message published once on a given topic (subject of interest)
 - ⇒ Every consumer registered to this topic receives a copy of the message
- Relies on a message broker
 - ⇒ Time decoupling and reliable message delivery

Solution using MQTT

- Event driven architecture
 - ⇒ Publish/Subscribe allows to push real-time data
 - ✤ From the control centre to the clients (one-to-many)
 - ✤ Low message transmission latency
- MQTT should be more efficient than HTTP
 - ⇒ Less bandwidth and power usage
- Time decoupling and reliable message delivery
 - ⇒ Use case #2: scientist disconnected when the payload telemetry is published

CCSDS Mission Operations (MO)

- Service Oriented Architecture for space activities
 - Standard end-to-end services that can be used on ground, ground to space, and in space
- Decoupling Consumer/Provider implementations
 - ⇒ MO services specify the meaningful information (semantic level)
 - Exchanged between a consumer and a provider
 - No dependency on the different links and transport protocols used underneath

MO service framework

Eclipse IoT Day Grenoble

MO framework implementations

 Two open-source implementations of the MO standard in Java, compliant with the MAL Java API

⇒ CNES

⇒ ESA

- The CNES implementation is used by a prototype of Mission Control System (MCS)
 - \Rightarrow Developed by CNES
 - ⇒ Relies on Java, OSGi and Joram
- MO component platform experimented
 - ⇒ Based on Distributed OSGi and iPOJO

Joram, MAL/Joram and JoramMQ

- Open-source message broker written in Java (http://joram.ow2.org)
 - ⇒ Client APIs
 - ♦ JMS API (v2.0)
 - 🄄 C++ API
- Open-source mapping MAL/Joram (CNES)
 ⇒ MAL Java API
- JoramMQ offering by ScalAgent
 ⇒ AMQP protocol (v0.9.1 and v1.0)
 ⇒ MQTT protocol (v3.1)

AMQP Client

MQTT Client

MAL/Joram key features

- Time decoupling provided by the message broker
 - ⇒ Message producers not tied to message consumers
 - ⇒ Slow consumers are handled by the message broker
 - Do not directly affect the producers
- Publish/Subscribe interaction pattern
 - ⇒ Real space decoupling provided by the message broker
 - Publishers do not need to know the network addresses of subscribers
 - ⇒ Scalability with the number of publishers and subscribers
 - ✤ By distributing the broker across multiple servers
- Message delivery reliability (no message loss)
 - ⇒ Messages delivered to the data store of the control centre
 - ⇒ Alerts transmission
- Interactions multiplexing (single connection) and flow control

MQTT/Joram

- Provided by JoramMQ
- Fully supports MQTT v3.1 (and upcoming v3.1.1)
 - ⇒ QoS levels
 - ⇔ QoS 0, 1, 2 and the Clean Session flag
 - ⇒ Topic
 - ✤ Hierarchies, wildcards, dynamic topic
 - Retained messages
- Administration tools and security mechanisms
 - ⇒ Topic access rights
- MQTT clients interoperate with JMS and AMQP clients
 - ⇒ Example: publish with MQTT and subscribe with JMS
 - ✤ Benefit from JMS 2.0 "shared subscriptions" (parallel consumers)

Scalability with the number of clients

Techno logie

Mapping from MO to MQTT

SCAL AGENT Distributed Technologies

Mapping to MQTT topics

- MO data are published in a *domain* for a given *session*
 - ⇒ A domain is a path, similar to an MQTT topic name
 - ✤ Identifies a subsystem or device
 - Example: "spacecraft/AOCS/STR"
 - A session is a name identifying the execution context LIVE, REPLAY (historical data), SIMUL (test data)
- Published parameters have a name and a definition id
 Definition: type and unit of a parameter
- Resulting MQTT topic format:
 - ⇒ <session>/<domain>/<param>/<def>
 - ⇒ "LIVE/spacecraft/AOCS/STR/Attitude/671"

Mapping to MQTT QoS, clean session, retain

- Best Effort
 - ⇒ Real-time telemetry data (use case #1)
 - ✤ Data may be dropped in order to keep up with real-time
- At least once
 - ⇒ Payload telemetry (use case #2)
 - ⇒ Alerts (use case #1)
- Exactly once
 - \Rightarrow Alerts (use case #1)
 - ♥ If alert not idempotent
- Sessions should not be *cleaned*
 - ⇒ Benefit from time decoupling and durable subscriptions
- All messages should be *retained*
 - ⇒ No need to retrieve a snapshot to have the current data values

Real-time telemetry published with MQTT

Eclipse IoT Day Grenoble

Scalability with the number of MQTT clients

More information about MQTT with Joram

JoramMQ offering by ScalAgent
 ⇒ http://mqtt.jorammq.com

