Monitoring a spacecraft from your smartphone using MQTT with Joram

joram.ow2.org
mqtt.jorammq.com
www.scalagent.com

David Féliot
Use case #1: on-call operators

- On-call operators (working outside the control centre)
 - Receive alert reports describing anomalies
 - First level analysis by checking the real-time telemetry
- Save time and effort

Diagram:

- Alert
- Real-time telemetry
- Internet
- Control centre
- Ground stations
- Home, public place, anywhere (connected)
Use case #2: distributed scientists

- Science team members remotely working
 - Their office is outside the mission centre that controls the scientific instruments
 - Need to monitor the instruments health
 - Situation happens in internationally cooperative space missions

![Diagram showing the process of payload health monitoring](diagram.png)
Existing solution

- **Client/server architecture**
 - Using HTTP to send requests to a data server
 - Alerts and telemetry are received by polling the server

- **Security can be easily handled**
 - One-way data flow (low interaction level)
 - From a secured zone (control centre) to a less secured zone (client)
 - No data sent by the clients to the control centre (e.g. commands)
MQTT (Message Queuing Telemetry Transport)

- Lightweight message queuing protocol
 - Devices with limited resources
 - Constrained networks (bandwidth, connectivity)

- Provides a Publish/Subscribe interaction pattern
 - Message published once on a given topic (subject of interest)
 - Every consumer registered to this topic receives a copy of the message

- Relies on a message broker
 - Time decoupling and reliable message delivery

![MQTT Diagram]

Diagram:
- Publisher
- Topic
- Message broker
- Message « hello »
- Subscriber
Solution using MQTT

- Event driven architecture
 - Publish/Subscribe allows to push real-time data
 - From the control centre to the clients (one-to-many)
 - Low message transmission latency
- MQTT should be more efficient than HTTP
 - Less bandwidth and power usage
- Time decoupling and reliable message delivery
 - Use case #2: scientist disconnected when the payload telemetry is published
CCSDS Mission Operations (MO)

- Service Oriented Architecture for space activities
 - Standard end-to-end services that can be used on ground, ground to space, and in space
- Decoupling Consumer/Provider implementations
 - MO services specify the meaningful information (semantic level)
 - Exchanged between a consumer and a provider
 - No dependency on the different links and transport protocols used underneath
MO service framework

- Monitoring and Control: Parameter, Alert, Action
- MAL Java API
- Data model
- Interaction patterns: req/resp, pub/sub
- Data encoding format
- Message sending/receiving, pub/sub

CCSDS Recommended Standard

CCSDS Recommended Practice
MO framework implementations

- Two open-source implementations of the MO standard in Java, compliant with the MAL Java API
 - CNES
 - ESA
- The CNES implementation is used by a prototype of Mission Control System (MCS)
 - Developed by CNES
 - Relies on Java, OSGi and Joram
- MO component platform experimented
 - Based on Distributed OSGi and iPOJO
Joram, MAL/Joram and JoramMQ

- Open-source message broker written in Java (http://joram.ow2.org)
 - Client APIs
 - JMS API (v2.0)
 - C++ API
- Open-source mapping MAL/Joram (CNES)
 - MAL Java API
- JoramMQ offering by ScalAgent
 - AMQP protocol (v0.9.1 and v1.0)
 - MQTT protocol (v3.1)
MAL/Joram key features

- **Time decoupling provided by the message broker**
 - Message producers not tied to message consumers
 - Slow consumers are handled by the message broker
 - Do not directly affect the producers

- **Publish/Subscribe interaction pattern**
 - Real space decoupling provided by the message broker
 - Publishers do not need to know the network addresses of subscribers
 - Scalability with the number of publishers and subscribers
 - By distributing the broker across multiple servers

- **Message delivery reliability (no message loss)**
 - Messages delivered to the data store of the control centre
 - Alerts transmission

- **Interactions multiplexing (single connection) and flow control**
MQTT/Joram

- Provided by JoramMQ
- Fully supports MQTT v3.1 (and upcoming v3.1.1)
 - QoS levels
 - QoS 0, 1, 2 and the Clean Session flag
 - Topic
 - Hierarchies, wildcards, dynamic topic
 - Retained messages
- Administration tools and security mechanisms
 - Topic access rights
- MQTT clients interoperate with JMS and AMQP clients
 - Example: publish with MQTT and subscribe with JMS
 - Benefit from JMS 2.0 “shared subscriptions” (parallel consumers)
Scalability with the number of clients

Distributed broker

Clustering broker

Message batches

Connectivity improved at the edges of the network

MQTT System SubSystem1

MQTT System SubSystem2

JMS

MQTT

MQTT

MQTT
Mapping to MQTT topics

- MO data are published in a *domain* for a given *session*
 - A domain is a path, similar to an MQTT topic name
 - Identifies a subsystem or device
 - Example: “spacecraft/AOCS/STR”
 - A session is a name identifying the execution context
 - LIVE, REPLAY (historical data), SIMUL (test data)
- Published parameters have a name and a definition id
 - Definition: type and unit of a parameter
- Resulting MQTT topic format:
 - `<session>/<domain>/<param>/<def>`
 - “LIVE/spacecraft/AOCS/STR/Attitude/671”
Mapping to MQTT QoS, clean session, retain

- **Best Effort**
 - Real-time telemetry data (use case #1)
 - Data may be dropped in order to keep up with real-time

- **At least once**
 - Payload telemetry (use case #2)
 - Alerts (use case #1)

- **Exactly once**
 - Alerts (use case #1)
 - If alert not idempotent

- **Sessions should not be** *cleaned*
 - Benefit from time decoupling and durable subscriptions

- **All messages should be** *retained*
 - No need to retrieve a snapshot to have the current data values
Real-time telemetry published with MQTT

Topics hierarchy
- LIVE/Spacecraft
 - AOCS
 - Thruster
 - Temp
 - SciencePayload
 - STR
 - Instrument
 - Attitude
 - Temp

50 000 parameters

Real-time telemetry < 64 kbit/s
Scalability with the number of MQTT clients

Control operators

Science team members

Science team members

MQTT

Science Payload

MQTT

Spacecraft

Telemetry Alert

Message batches

Message batches
More information about MQTT with Joram

- JoramMQ offering by ScalAgent
 ⇒ http://mqtt.jorammq.com