-

Extensible Parsers
— LRParser and UPC Extensions

Mike Kucera
Jason Montojo
IBM Eclipse CDT Team

CDT Summit
Ottawa, Ontario, Canada
2007

© 2006 IBM; made available under the EPL v1.0 | August 8, 2006 —

QP

Overview

= Goals

» To create a parser framework that allows language extensions to
be easily added to CDT

» Modularity
» Clean implementation, maintainability

» Performance

= Support for Unified Parallel C (UPC) needed by the Parallel
Tools Project

» UPC spec is an extension to the C99 spec

2 © 2007 IBM Corporation; made available under the EPL v1.0 —

C99 Parser in CDT 4.0

= C99 parser base
> Designed to be extensible

= UPC parser
> Built on top of C99 parser

3 © 2007 IBM Corporation; made available under the EPL v1.0

— 3 D S:C

Language Extensibility in CDT

= What CDT currently provides
» Extension point for adding new parsers

» Map languages to content types
» Syntax highlighting can be extended to new keywords
» Add new types of AST nodes

* What CDT does not provide
> A parser that can be directly extended to support new syntax

> A reusable preprocessor

* Edit (2012): this is no longer true, the CDT preprocessor was
rewritten and is now reusable

4 © 2007 IBM Corporation; made available under the EPL v1.0 —

== ’E)'_;j-_\‘r"
C99 Parser in CDT 4.0

= Different approach than the DOM parser
» DOM parser completely hand written

= C99 Parser generated from grammar files using a parser generator
» Using LPG - LALR Parser Generator

> Bottom-up parsing approach
» Grammar file looks similar to the spec

= Some parts of DOM parser are reused

> AST
» LocationMap

5 © 2007 IBM Corporation; made available under the EPL v1.0 —

QP

LPG — LALR Parser Generator

= Two parts

» The generator (Ipg.exe)

* Generates parse tables from grammar file

* Parse tables are basically a specification of a finite state
machine

» The runtime (java library)

* Contains the parser driver and supporting classes
* Parser driver interprets the parse tables

6 © 2007 IBM Corporation; made available under the EPL v1.0 —

g@ PSS

LPG — LALR Parser Generator

* LPG is used by several eclipse projects including:
» Model Development Tools (MDT)

» Graphical Modeling Framework (GMF)

» Generative Modeling Technologies (GMT)
» Data Tools Platform (DTP)

> SAFARI

» Java Development Tools (JDT, in the bytecode compiler)

= Part of Orbit project

7 © 2007 IBM Corporation; made available under the EPL v1.0 —

-

LPG — Benefits

= Automatic
» Computation of AST node offsets

» Backtracking

» Syntax error recovery

= Clean separation of parser and the code that builds the AST

= Grammar file inheritance
» Source of parser extensibility

8 © 2007 IBM Corporation; made available under the EPL v1.0 —

= C pg c

C99 Grammar File Example

statement
= labeled statement
| compound statement
| expression_ statement
| selection_statement
| iteration_statement
| Jump statement
| ERROR_TOKEN

/.$ba consumeStatementProblem(); $ea./

iteration_statement

::= 'do' statement 'while' '(' expression ')' ';'
/.8ba consumeStatementDolLoop(); Sea./
| 'while' '(' expression ')' statement

/.8ba consumeStatementWhileLoop(); $ea./

| '"for' '(' expression ';' expression ';' expression ')' statement
/.8ba consumeStatementForLoop (true, true, true); Sea./

9 | © 2007 IBM Corporation; made available under the EPL v1.0

— 3 D S:C

AST Building Actions

/**
* iteration_statement ::= 'while' '(' expression ')' statement
*/

public void consumeStatementWhileLoop () ({
IASTWhileStatement whileStatement = nodeFactory.newWhileStatement() ;

IASTStatement body
IASTExpression condition

(IASTStatement) astStack.pop()
(IASTExpression) astStack.pop();

whileStatement. setBody (body) ;
body.setParent (whileStatement) ;
body.setPropertyInParent (IASTWhileStatement.BODY) ;

whileStatement.setCondition (condition) ;

condition.setParent (whileStatement) ;

condition.setPropertyInParent (IASTWhileStatement. CONDITIONEXPRESSION) ;
setOffsetAndLength (whileStatement) ;

astStack.push(whileStatement) ;

10 © 2007 IBM Corporation; made available under the EPL v1.0

=£ ClipSe

Content Assist

= 5 simple grammar rules

ident ::= 'identifier' | 'Completion'

"1 =? 'RightBracket' | 'EndOfCompletion'
") =? 'RightParen' | 'EndOfCompletion'’
"} =? 'RightBrace' | 'EndOfCompletion'’
';' ::=? 'SemiColon' | '"EndOfCompletion'’

= First rule says that a Completion token can occur anywhere an
identifier token can occuir.

" Next 4 rules allow the parse to complete successfully after a
Completion token has been encountered.

11 © 2007 IBM Corporation; made available under the EPL v1.0 —

Generating The Parser From Grammar Files

Grammar Sores
File Tables
‘ \
Recognizes
C99Lexer.g E— roonz
Generator
lpg.exe
Grammar / \
File Parse
Tables
C99Parser.g Rei%%gﬁ:; E5399

12 © 2007 IBM Corporation; made available under the EPL v1.0 —

Architecture of C99 Parser

Token
Preprocessor —omeam Parser
oo C99 Xg? AST
Lexer Keyword _
Map Actions

13 © 2007 IBM Corporation; made available under the EPL v1.0 —

g@ PSS

Extensibility — Supporting UPC

= UPC grammar file extends the C99 grammar file
» Adds new grammar rules for UPC syntax

» Generates new parse tables that recognize UPC

$Import
C99Parser.g
SEnd

iteration_statement
::= 'upc_forall' '(' expression ';' expression ';' expression ';'
affinity ')' statement
/.8ba consumeStatementUPCForallloop (true, true, true, true); S$ea./

14 © 2007 IBM Corporation; made available under the EPL v1.0 —

QP

Extensibility — Supporting UPC

= Extend C99 classes.

C99ParserAction C99KeywordMap

/\ /\

UPCParserAction UPCKeywordMap
Adds actions for new Adds mappings for new
grammar rules UPC keywords like

‘upc_forall’

15 © 2007 IBM Corporation; made available under the EPL v1.0 —

E@Pf*ﬁ S

Extensibility — Supporting UPC

= Create AST node classes for new language constructs

CASTForStatement

/\

UPCASTForallStatement

16 © 2007 IBM Corporation; made available under the EPL v1.0 —

Architecture of UPC Parser

Token
Preprocessor —omeam Parser
— UPC UPC AST
Lexer Keyword AST
Map Actions

17 © 2007 IBM Corporation; made available under the EPL v1.0 —

=CClIPSE

Future Work

Make the preprocessor reusable
» Reusable on any token stream

» Use for FORTRAN etc...

Support for C++
» Advanced approach

* Edit (2012) — an extensible LR parser for C++ is now available

Provide compiler specific extensions
» GCC, XLC etc...

Further performance enhancements
» We haven’t spent much time on optimizations yet

18 | © 2007 IBM Corporation; made available under the EPL v1.0 —

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

